【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A、與軸交于點(diǎn)B,且ABO45°,A(-6,0),直線BC與直線AB關(guān)于軸對(duì)稱.

(1)ABC的面積;

(2)如圖2,DOA延長線上一動(dòng)點(diǎn),以BD為直角邊,D為直角頂點(diǎn),作等腰直角BDE,求證:ABAE

(3)如圖3,點(diǎn)E軸正半軸上一點(diǎn),且OAE30°AF平分OAE,點(diǎn)M是射線AF上一動(dòng)點(diǎn),點(diǎn)N是線段AO上一動(dòng)點(diǎn),判斷是否存在這樣的點(diǎn)M,N,使OMNM的值最?若存在,請(qǐng)寫出其最小值,并加以說明.

【答案】(1)36;(2)證明見解析;(3)3,理由見解析.

【解析】

(1)根據(jù)直線與坐標(biāo)軸的交點(diǎn)易得A,C的坐標(biāo),從而得出AC=12OB=6,根據(jù)三角形面積公式可求解;

(2)EEFx軸于點(diǎn)F,延長EA交y軸于點(diǎn)H,證DEF≌△BDO,得出EFODAF,有,得出∠BAE90°.

(3)由已知條件可在線段OA上任取一點(diǎn)N,再在AE作關(guān)于OF的對(duì)稱點(diǎn),當(dāng)點(diǎn)N運(yùn)動(dòng)時(shí),最短為點(diǎn)O到直線AE的距離.再由,在直角三角形,

即可得解.

解:(1)由已知條件得:

AC=12,OB=6

2)過EEFx軸于點(diǎn)F,延長EA交y軸于點(diǎn)H,

BDE是等腰直角三角形,

∴DE=DB, ∠BDE=90°,

∵EF軸,

∴DF=BO=AO,EF=OD

∴AF=EF

∴∠BAE90°

3)由已知條件可在線段OA上任取一點(diǎn)N,再在AE作關(guān)于OF的對(duì)稱點(diǎn),當(dāng)點(diǎn)N運(yùn)動(dòng)時(shí),最短為點(diǎn)O到直線AE的距離,即點(diǎn)O到直線AE的垂線段的長,

OA=6,

OM+ON=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線平行移動(dòng)線段的長度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:

在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長ABBC,CA至點(diǎn)A1B1,C1,使A1BAB,B1CBC,C1ACA,順次連結(jié)A1B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1A1B1,B2C1B1C1C2A1C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過2013,最少經(jīng)過_____次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,且ABC60°,DABC內(nèi)一點(diǎn) ,且DADB,EABC外一點(diǎn),BEAB,且EBDCBD,連DE,CE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座建于若干年前的水庫大壩的橫斷面如圖所示,其中背水面的整個(gè)坡面是長為米、寬為米的矩形.現(xiàn)需將其整修并進(jìn)行美化,方案如下:①將背水坡的坡度由改為②用一組與背水坡面長邊垂直的平行線將背水坡面分成塊相同的矩形區(qū)域,依次相間地種草與栽花.

(1)求整修后背水坡面的面積;

(2)如果栽花的成本是每平方米元,種草的成本是每平方米元,那么種植花草至少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還多4元.

(1)求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?

(2)時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,由于紅桔和“玫瑰香橙”都深受庫區(qū)人民歡迎,實(shí)際水果店老板在12月份購進(jìn)的紅桔數(shù)量比11月份增加了m%,香橙購進(jìn)的數(shù)量比11月份增加了2m%,結(jié)果12月份所購進(jìn)的這兩種柑橘的總價(jià)與11月份所購進(jìn)的這兩種柑橘的總價(jià)相同,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACB中,ACB=90゜,CDAB于D.

(1)求證:ACD=B;

(2)若AF平分CAB分別交CD、BC于E、F,求證:CEF=CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC10cmBC6cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒,BPDCQP是否全等?請(qǐng)說明理由;

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的垂直平分線,交射線上,并且

)求證:;

)當(dāng)的大小滿足什么條件時(shí),四邊形是菱形?請(qǐng)回答并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案