【題目】“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還多4元.
(1)求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?
(2)時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,由于紅桔和“玫瑰香橙”都深受庫區(qū)人民歡迎,實(shí)際水果店老板在12月份購進(jìn)的紅桔數(shù)量比11月份增加了m%,香橙購進(jìn)的數(shù)量比11月份增加了2m%,結(jié)果12月份所購進(jìn)的這兩種柑橘的總價(jià)與11月份所購進(jìn)的這兩種柑橘的總價(jià)相同,求m的值.
【答案】(1)11月份紅桔的進(jìn)價(jià)為每千克8元,香橙的進(jìn)價(jià)為每千克20元;(2)m的值為49.6
【解析】分析:(1)、首先設(shè)11月份紅桔的進(jìn)價(jià)為每千克x元,香橙的進(jìn)價(jià)為每千克y元,根據(jù)題意列出二元一次方程組,從而得出答案;(2)、根據(jù)題意列出關(guān)于m的一元二次方程,從而求出方程的解得出答案.
詳解:(1)設(shè)11月份紅桔的進(jìn)價(jià)為每千克x元,香橙的進(jìn)價(jià)為每千克y元,依題意有
, 解得.
答:11月份紅桔的進(jìn)價(jià)為每千克8元,香橙的進(jìn)價(jià)為每千克20元;
(2)依題意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×600(1+2m%)=15200,
解得m1=0(舍去),m2=49.6. 故m的值為49.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2018的坐標(biāo)為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為 的扇形 中,半徑 =4cm, 為弧 的中點(diǎn),, 分別是 , 的中點(diǎn),則圖中陰影部分的面積(單位)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為5,弦AB⊥CD于E,AB=CD=8.
(1)求證:AC=BD;
(2)若OF⊥CD于F,OG⊥AB于G,試說明四邊形OFEG是正方形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點(diǎn),使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結(jié)束】
20
【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1、A2、A3……在射線ON上,點(diǎn)B1、B2、B3……在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4……均為等邊三角形,且OA1=1.
(1)分別求出△A1B1A2、△A3B3A4的邊長;
(2)求△A7B7A8的周長(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,,,點(diǎn)為邊上的動(dòng)點(diǎn),點(diǎn)為邊上的點(diǎn),則的最小值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com