【題目】如圖所示,在正方形ABCD中,E是BC的中點,F是CD上一點,AE⊥EF,下列結(jié)論:①∠BAE=30°;②△ABE∽△AEF;③CD=3CF;④S△ABE=4S△ECF.其中正確的有_____(填序號).
【答案】②④.
【解析】
由正方形的性質(zhì)和三角函數(shù)得出∠BAE<30°,①不正確;由題中條件可得△CEF∽△BAE,進而得出對應線段成比例,得出②正確,CF=13FD,③不正確;進而又可得出△ABE∽△AEF,得出④正確,即可得出題中結(jié)論.
解:tan∠BAE=,
∴∠BAE≠30°,故①錯誤;
∵四邊形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,
∴,
∵BE=CE=BC,
∴==4,
∴S△ABE=4S△ECF,故④正確;
∴CF=EC=CD,
∴CD=4CF,
故③錯誤;
設CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,
∴,,
∴,
∴△ABE∽△AEF,故②正確.
∴②與④正確.
故答案為:②④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 兩點的坐標分別為,點分別是直線和x軸上的動點,,點是線段的中點,連接交軸于點;當⊿面積取得最小值時,的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數(shù)如圖所示.
(1)在5月17日至5月21日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續(xù)按這個平均數(shù)增加,那么到5月26日,日本甲型H1N1流感累計確診病例將會達到多少人?
(2)甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接疫情徹底結(jié)束后的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | ||
售價(元/雙) |
已知:用元購進甲種運動鞋的數(shù)量與用元購進乙種運動鞋的數(shù)量相同.
求的值;
要使購進的甲、乙兩種運動鞋共雙的總利潤(利潤售價進價)不少于元,且甲種運動鞋的數(shù)量不超過雙,問該專賣店共有幾種進貨方案;
在的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】扶貧工作小組對果農(nóng)進行精準扶貧,幫助果農(nóng)將一種有機生態(tài)水果拓寬了市場.與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價比去年降低了1元,批發(fā)銷售總額比去年增加了.
(1)已知去年這種水果批發(fā)銷售總額為10萬元,求這種水果今年每千克的平均批發(fā)價是多少元?
(2)某水果店從果農(nóng)處直接批發(fā),專營這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價為41元,則每天可售出300千克;若每千克的平均銷售價每降低3元,每天可多賣出180千克,設水果店一天的利潤為元,當每千克的平均銷售價為多少元時,該水果店一天的利潤最大,最大利潤是多少?(利潤計算時,其它費用忽略不計.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:由兩條與x軸有著相同的交點,并且開口方向相同的拋物線所圍成的封閉曲線稱為“月牙線”.如圖,拋物線C1與拋物線C2組成一個開口向上的“月牙線”,拋物線C1與拋物線C2與x軸有相同的交點M,N(點M在點N的左側(cè)),與y軸的交點分別為A,B且點A的坐標為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m,(m>0).
(1)請你根據(jù)“月牙線”的定義,設計一個開口向下.“月牙線”,直接寫出兩條拋物線的解析式;
(2)求M,N兩點的坐標;
(3)在第三象限內(nèi)的拋物線C1上是否存在一點P,使得△PAM的面積最大?若存在,求出△PAM的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:EF=BF;
(2)求證:BC是⊙O的切線.
(3)若AB=4,BC=3,求DE的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與直線AB交于點A(-1,0),B(4,).點D是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的解析式;
(2)設點D的橫坐標為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標;
(4)當點D為拋物線的頂點時,若點P是拋物線上的動點,點Q是直線AB上的動點,判斷有幾個位置能使以點P,Q,C,D為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com