【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù)且abc≠0)與直線l都經(jīng)過y軸上的同一點,且拋物線的頂點在直線l上,則稱拋物線L與直線l具有一帶一路關(guān)系,并且將直線1叫做拋物線L路線,拋物線L叫做直線l帶線

(1)若路線”l的表達式為y=2x﹣4,它的帶線”L的頂點的橫坐標為﹣1,求帶線”L的表達式;

(2)如果拋物線y=2x2﹣4x+1與直線y=nx+1具有一帶一路關(guān)系,如圖,設(shè)拋物線與x軸的一個交點為A,與y軸交于點B,其頂點為C.

△ABC的面積;

y軸上是否存在一點P,使SPBC=SABC,若存在,直接寫出點P的坐標,若不存在,請說明理由.

【答案】1y=2x2+4x4;(2)①;②P點坐標為(0,)或(0,).

【解析】

1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系可得頂點坐標,根據(jù)待定系數(shù)法可得函數(shù)解析式;

2①根據(jù)配方法,可得頂點坐標根據(jù)待定系數(shù)法,可得BC的解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得B,A點坐標根據(jù)三角形的面積的和差可得答案;

②根據(jù)面積間的關(guān)系可得關(guān)于n的方程,根據(jù)解方程,可得答案

1帶線L的頂點的橫坐標為﹣1,y=2×(﹣1)﹣4=﹣6,帶線L的頂點的(﹣1,﹣6),設(shè)L的解析式為y=ax+126

路線y=2x4y軸的交點坐標是(0,﹣4).

∵帶線L也經(jīng)過(0,﹣4),將(0,﹣4)代入L的表達式a=2,“帶線L的表達式為y=2x+126=2x2+4x4;

2y=2x24x+1=2x121其頂點坐標是(1,﹣1),直線y=nx+1經(jīng)過(1,﹣1),解得n=﹣2,直線BC的解析式為y=﹣2x+1,y=0,﹣2x+1=0解得x=,D,0),AD=1=

x=0y=1,B01),y=0,2x24x+1=0,解得x=1,A點坐標為(1+0),SABC=ADyByC)=××1+1)=;

②如圖設(shè)P0,n),BP=|1n|,SPBC=SABC,

|1n1=×,化簡得1n=,n1=

解得n=n=,P點坐標為(0,)或(0,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AC=BC=10,C=90°,OAC邊上,CO=2,PBC邊上,連接OP繞點O逆時針旋轉(zhuǎn)90°,使得點P落在AB邊上的點D,CP的長是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y33x+2正比例,且x=2時,y=5

1)求yx之間的函數(shù)關(guān)系式,并指出它是什么函數(shù);

2)點(4,6)是否在這個函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教研室的數(shù)學調(diào)研小組對老師在講評試卷中學生參與的深度與廣度進行評調(diào)查,其評價項目為主動質(zhì)疑”、“獨立思考”、“專注聽講”、“講解題目四項,該調(diào)研小組隨機抽取了若干名初中九年級學生的參與情況,繪制成如圖所示的頻數(shù).

分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題

(1)在這次評價中,一共抽查了   名學生;

(2)在扇形統(tǒng)計圖中,項目主動質(zhì)疑所在的扇形的圓心角的度數(shù)為   度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市有60000名九年級學生,那么在試卷評講課中,獨立思考的九年級學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA=6,點D是射線OM上的動點,當點D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連接DE.

(1)如圖1,猜想:△CDE的形狀是   三角形.

(2)請證明(1)中的猜想

(3)設(shè)OD=m,

6<m<10時,△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請說明理由.

是否存在m的值,使△DEB是直角三角形,若存在,請直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b與直線y=2x平行,且經(jīng)過點A44).

1)求kb的值;

2)若直線y=kx+by軸相交于點B,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB、BC、AC三邊的長分別為 ,求這個三角形的面積.小明同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積.

1ABC的面積為      

2)若DEF的三邊DE、EFDF長分別為, , ,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的DEF,并求出DEF的面積為      

3)在ABC中,AB=2,AC=4,BC=2,以AB為邊向ABC外作ABDDCAB異側(cè)),使ABD為等腰直角三角形,則線段CD的長為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新建成學校舉行美化綠化校園活動,九年級計劃購買,種花木共100棵綠化操場,其中木每棵50元,花木每棵100元.

(1)若購進,花木剛好用去8000元,則購買了種花木各多少棵?

(2)如果購買花木的數(shù)量不少于花木的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC8米,∠BCD=135°,通道斜面CD的長為6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的長;

(2)為增加市民行走的舒適度,擬將設(shè)計圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時BE的長.

(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)

查看答案和解析>>

同步練習冊答案