【題目】如圖,將一個(gè)等腰Rt△ABC對(duì)折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點(diǎn)F處,展開后,折痕AE交CD于點(diǎn)P,連接PF、EF,下列結(jié)論:①tan∠CAE=﹣1;②圖中共有4對(duì)全等三角形;③若將△PEF沿PF翻折,則點(diǎn)E一定落在AB上;④PC=EC;⑤S四邊形DFEP=S△APF.正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】試題解析:①正確.作EM∥AB交AC于M.
∵CA=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=∠CAB=22.5°,
∴∠MEA=∠EAB=22.5°,
∴∠CME=45°=∠CEM,設(shè)CM=CE=a,則ME=AM=a,
∴tan∠CAE=,故①正確,
②正確.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正確,
③正確.∵△PEC≌△PEF,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若將△PEF沿PF翻折,則點(diǎn)E一定落在AB上,故③正確.
④正確.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP,
∴CP=CE,故④正確,
⑤錯(cuò)誤.∵△APC≌△APF,
∴S△APC=S△APF,
假設(shè)S△APF=S四邊形DFPE,則S△APC=S四邊形DFPE,
∴S△ACD=S△AEF,
∵S△ACD=S△ABC,S△AEF=S△AEC≠S△ABC,
∴矛盾,假設(shè)不成立.
故⑤錯(cuò)誤.
.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對(duì)移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的“便民卡”與“如意卡”在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:
(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;
(2)請(qǐng)幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上,點(diǎn) A 的初始位置表示的數(shù)為 1,現(xiàn)點(diǎn) A 做如下移動(dòng):第 1 次點(diǎn) A 向左移動(dòng) 3 個(gè)單位長度至點(diǎn) A1,第 2 次從點(diǎn) A1 向右移動(dòng) 6 個(gè)單位長度至點(diǎn) A2,第 3 次從點(diǎn) A2 向左移動(dòng) 9 個(gè)單位長度至點(diǎn) A3,…,按照這種移動(dòng)方式進(jìn)行下去,點(diǎn) A4 表示的數(shù),是__________ ,如果點(diǎn) An 與原點(diǎn)的距離不小于 20, 那么 n 的最小值是________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于,所以的整數(shù)部分為1,將減去其整數(shù)部分1,所得的差就是其小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
的整數(shù)部分是______,小數(shù)部分是______;
的整數(shù)部分是______,小數(shù)部分是______;
整數(shù)部分是______,小數(shù)部分是______;
若設(shè)整數(shù)部分是x,小數(shù)部分是y,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:_____________,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。
(1)試判斷B'E與DC的位置關(guān)系并說明理由。
(2)如果∠C=130°,求∠AEB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字:
我們知道,對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式_____;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)圖3中給出了若干個(gè)邊長為a和邊長為b的小正方形紙片及若干個(gè)邊長分別為a、b的長方形紙片,
①請(qǐng)按要求利用所給的紙片拼出一個(gè)幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2,
②再利用另一種計(jì)算面積的方法,可將多項(xiàng)式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊三角形紙片ABC,使點(diǎn)A落在BC邊上的點(diǎn)F,且折痕DE∥BC,若∠A=75°,∠C=60°,則∠BDF=____________________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com