【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長線、DC的延長線于點(diǎn)G,H,交BD于點(diǎn)O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,∠BAE=∠DCF,
在△ABE和△CDF中, ,
∴△ABE≌△CDF(SAS)
(2)解:四邊形BEDF是菱形;理由如下:如圖所示:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴DE=BF,
∴四邊形BEDF是平行四邊形,
∴OB=OD,
∵DG=BG,
∴EF⊥BD,
∴四邊形BEDF是菱形.
【解析】(1)由平行四邊形的性質(zhì)得出AB=CD,∠BAE=∠DCF,由SAS證明△ABE≌△CDF即可;(2)由平行四邊形的性質(zhì)得出AD∥BC,AD=BC,證出DE=BF,得出四邊形BEDF是平行四邊形,得出OB=OD,再由等腰三角形的三線合一性質(zhì)得出EF⊥BD,即可得出四邊形BEDF是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D是AC的中點(diǎn),延長BC到E,使CE=CD.
(1)用尺規(guī)作圖的方法,過點(diǎn)D作DM⊥BE,垂足為M(不寫作法,只保留作圖痕跡);
(2)若AB=2,求EM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點(diǎn)P(a,b)在函數(shù)y= 的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y= 的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題: ①存在函數(shù)y= 的一個(gè)“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)
②函數(shù)y= 的所有“派生函數(shù)”,的圖象都經(jīng)過同一點(diǎn),下列判斷正確的是( )
A.命題①與命題②都是真命題
B.命題①與命題②都是假命題
C.命題①是假命題,命題②是真命題
D.命題①是真命題,命題②是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y= x﹣3與反比例函數(shù)y= 的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)填空:n的值為 , k的值為;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比例函數(shù)y= 的圖象,當(dāng)y≥﹣2時(shí),請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=40°,延長AC到D,使CD=BC,點(diǎn)P是△ABD的內(nèi)心,則∠BPC=( )
A.105°
B.110°
C.130°
D.145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于鈍角α,定義它的三角函數(shù)數(shù)值如下: sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α).
(1)求sin135°,cos150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比為1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),且∠A≤∠B,sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m值及∠A,∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型文體活動(dòng)需招募一批學(xué)生作為志愿者參與服務(wù),已知報(bào)名的男生有420人,女生有400人,他們身高均在150≤x<175之間,為了解這些學(xué)生身高的具體分別情況,從中隨機(jī)抽取若干學(xué)生進(jìn)行抽樣調(diào)查,抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表提供的信息,有下列幾種說法
①估計(jì)報(bào)名者中男生身高的眾數(shù)在D組;
②估計(jì)報(bào)名者中女生身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④估計(jì)身高在160cm至170cm(不含170cm)的學(xué)生約有400人
其中合理的說法是( )
A.①②
B.①④
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標(biāo)上1、2、3,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再從中隨機(jī)抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com