【題目】若等腰三角形的三邊長均滿足方程x2﹣7x+10=0,則此三角形的周長為( )
A. 9B. 12C. 9或12D. 不能確定
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,正確的個數(shù)為
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD在坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)是A(2,1),且邊AB、CD與x軸平行,邊AD、BC與x軸平行,點(diǎn)B、C的坐標(biāo)分別為B(a,1),C(a,c),且a、c滿足關(guān)系式.c=++3
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)怎樣平移,才能使A點(diǎn)與原點(diǎn)重合?平移后點(diǎn)B、C、D的對應(yīng)分別為B1C1D1 , 求四邊形OB1C1D1的面積;
(3)平移后在x軸上是否存在點(diǎn)P,連接PD,使S△COP=S四邊形OBCD?若存在這樣的點(diǎn)P,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的結(jié)果( )
A. 8(7a-8b)(a-b) B. 2(7a-8b)2
C. 8(7a-8b)(b-a) D. -2(7a-8b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B的坐標(biāo)是(﹣4,0),把△AOB平移,使點(diǎn)A移至點(diǎn)D(2,1),點(diǎn)O、B的對應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)請在圖中畫出△DEF,并寫出點(diǎn)E,F(xiàn)的坐標(biāo).
(2)點(diǎn)P(﹣1,1)在△AOB內(nèi),當(dāng)△AOB平移到△DEF位置時,求點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2。其中有公因式的是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在國內(nèi)投寄平信應(yīng)付郵資如下表:
信件質(zhì)量x(克) | |||
郵資y(元) | 0.80 | 1.60 | 2.40 |
(1)y是x的函數(shù)嗎?為什么?
(2)分別求當(dāng)x=5,10,30,50時的函數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com