【題目】如圖1,在一個邊長為a的正方形木板上鋸掉一個邊長為b的正方形, 并把余下的部分沿虛線剪開拼成圖2的形狀.

(1)請用兩種方法表示陰影部分的面積

1得: ; 2 ;

(2)由圖1與圖2 面積關(guān)系,可以得到一個等式: ;

(3)利用(2)中的等式,已知,且a+b=8,則a-b= .

【答案】1,;(2;(32.

【解析】

1)圖1用大正方形的面積減去小正方形的面積表示陰影部分的面積;圖2根據(jù)梯形的面積公式表示陰影部分的面積;

2)根據(jù)陰影部分的面積相等,可直接得出等式;

3)利用(2)中的等式,代入數(shù)據(jù)求解即可

解:(1)圖1得:;圖2得:

故答案為:,;

2)由圖1與圖2陰影部分的面積相等可得:

故答案為:;

3)∵,,

,

,

故答案為:2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的AB兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,DBC=65°.AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°0.91,cos65°0.42,tan65°2.14).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校組織800名學生參加了一次“漢字聽寫”大賽.賽后發(fā)現(xiàn)所有參賽學生的成績均不低于60分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中若干名學生的成績作為樣本,成績?nèi)缦拢?/span>

90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60

對上述成績進行了整理,得到下列不完整的統(tǒng)計圖表:

成績x/分

頻數(shù)

頻率

60≤x<70

6

0.15

70≤x<80

a

b

80≤x<90

14

0.35

90≤x≤100

c

d

請根據(jù)所給信息,解答下列問題:

(1)a   ,d   

(2)請補全頻數(shù)分布直方圖

(3)若成績在90分以上(包括90分)的為“優(yōu)等,請你估計參加這次比賽的800名學生中成績“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,是對角線上的兩點(不與點,重合)下列條件中,無法判斷四邊形一定為平行四邊形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖正比例函數(shù)y=2x的圖像與一次函數(shù) 的圖像交于點A(m,2),一次函數(shù)的圖象經(jīng)過點B(-2,-1)與y軸交點為C與x軸交點為D.

(1)求一次函數(shù)的解析式;

(2)求的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國元朝朱世杰所著的《算學啟蒙》(1299年)一書中有一道題目是:今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問良馬幾何日追及之.譯文是:快馬每天走240里,慢馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?

1)設(shè)快馬x天可以追上慢馬,請你將如下的線段圖補充完整:

2)根據(jù)(1)中線段圖所反映的數(shù)量關(guān)系,列方程解決問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 的直徑,點上一點, 與過點的切線垂直,垂足為點,直線的延長線相交于點,弦平分,交于點,連接

1)求證: 平分;

2)求證:PC=PF

3)若,AB=14,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形中,,點是斜邊上的一點,將沿翻折得,連接,若是等腰三角形,則的長是______

查看答案和解析>>

同步練習冊答案