科目:初中數學 來源:2011年遼寧省沈陽市中考數學試題 題型:044
小劉同學在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點O距離地面的高O=2米.當吊臂頂端由A點抬升至點(吊臂長度不變)時,地面B處的重物(大小忽略不計)被吊至處,緊繃著的吊纜=AB.AB垂直地面B于點B,垂直地面B于點C,吊臂長度O=OA=10米,且cosA=,sin=.
(1)求此重物在水平方向移動的距離BC;
(2)求此重物在豎直方向移動的距離C.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源:2013年河北市高級中等學校招生考試數學 題型:044
一透明的敞口正方體容器ABCD-裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖①所示).
探究如圖①,液面剛好過棱CD,并與棱B交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖②所示.解決問題:
(1)CQ與BE的位置關系是________,BQ的長是________dm;
(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=,tan37°=)
拓展在圖①的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖③或圖④是其正面示意圖.若液面與棱C或CB交于點P,設PC=x,BQ=y.分別就圖③和圖④求y與x的函數關系式,并寫出相應的α的范圍.
[溫馨提示:下頁還有題!]
延伸在圖④的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖⑤,隔板高NM=1 dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業(yè)升學考試(河北卷)數學(帶解析) 題型:解答題
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=,tan37°=)
拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業(yè)升學考試(河北卷)數學(解析版) 題型:解答題
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=,tan37°=)
拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖6所示,正方形ABCD的邊長為12,劃分成12×12個小正方形格,將邊長為n(n為整數,且2≤n≤11)的黑白兩色正方形紙片按圖中的方式,黑白相間地擺放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)個小正方形.如此擺放下去,直到紙片蓋住正方形ABCD的右下角為止.
請你認真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時所使用正方形紙片的張數也不同,請?zhí)顚懴卤恚?/p>
紙片的邊長n | 2 | 3 | 4 | 5 | 6 |
使用的紙片張數 |
(2)設正方形ABCD被紙片蓋住的面積(重合部分只計一次)為S1,未被蓋住的面積為S2.
①當n=2時,求S1∶S2的值;
②是否存在使得S1=S2的n值?若存在,請求出來;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com