如圖6所示,正方形ABCD的邊長為12,劃分成12×12個小正方形格,將邊長為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式,黑白相間地擺放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)個小正方形.如此擺放下去,直到紙片蓋住正方形ABCD的右下角為止.
請你認真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時所使用正方形紙片的張數(shù)也不同,請?zhí)顚懴卤恚?/p>
紙片的邊長n | 2 | 3 | 4 | 5 | 6 |
使用的紙片張數(shù) |
(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計一次)為S1,未被蓋住的面積為S2.
①當(dāng)n=2時,求S1∶S2的值;
②是否存在使得S1=S2的n值?若存在,請求出來;若不存在,請說明理由.
解(1)依題意可依次填表為:11、10、9、8、7.
(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.
①當(dāng)n=2時,S1=-22+25×2-12=34,S2=12×12-34=110.
所以S1∶S2=34∶110=17∶55.
②若S1=S2,則有-n2+25n-12=×122,即n2-25n+84=0,
解這個方程,得n1=4,n2=21(舍去).
所以當(dāng)n=4時,S1=S2.所以這樣的n值是存在的.
說明 求解本題時要通過閱讀題設(shè)條件及提供的圖表,及時挖掘其中的隱含條件,對于求解第(3)小題,可以先假定問題的存在,進而構(gòu)造一元二次方程,看得到的一元二次方程是否有實數(shù)根來加以判斷.
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、2 | ||
C、
| ||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新教材 同步練 數(shù)學(xué) 七年級下冊 配人教版 題型:044
某紙盒廠裁出如圖1所示的正方形硬紙片150張和長方形硬紙片300張,用來制作如圖2所示的甲、乙兩種無蓋的長方體小盒.若兩種硬紙片全部用于制作兩種小盒(沒有剩余),那么可以各制作多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新教材 同步練 數(shù)學(xué) 七年級下冊 配人教版 題型:068
用四塊如圖1和如圖2所示的正方形瓷磚拼成一個大的、規(guī)則的正方形圖案,如圖3所示.
請你在如圖4和圖5中各畫一種不同于如圖3所示的規(guī)則圖案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:不詳 題型:單選題
A.
| B.2 | C.
| D.
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com