【題目】我們知道,對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)等式.例

如圖1可以得到.請(qǐng)解答下列問(wèn)題:

(1)根據(jù)圖2,完成數(shù)學(xué)等式: = ;

(2)觀察圖3,寫(xiě)出圖3中所表示的等式:        =____________.

(3)若、、,且,請(qǐng)利用(2)所得的結(jié)論求:的值

【答案】(1)4a2;(2)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(3)-18;

【解析】

第一小題和第二小題可據(jù)數(shù)據(jù)表示出矩形的長(zhǎng)與寬,再根據(jù)矩形的面積公式寫(xiě)出等式的左邊,再表示出每一小部分的矩形的面積,然后根據(jù)面積相等即可寫(xiě)出等式;三小題可據(jù)利用(2) 中所得到的結(jié)論,將abc1,作為整式代入即可求出.

(1)

(2)

(3)由得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E(與點(diǎn)B、C不重合)是BC邊上一點(diǎn),將線(xiàn)段EA繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,過(guò)點(diǎn)F作BC的垂線(xiàn)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G,連接CF.

(1)求證:△ABE≌△EGF;
(2)若AB=2,SABE=2SECF , 求BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線(xiàn)EF翻折,點(diǎn)C落在點(diǎn)P處,若點(diǎn)P能落在線(xiàn)段AB上,則線(xiàn)段CF長(zhǎng)的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時(shí)發(fā)現(xiàn)忘帶手機(jī),此時(shí)離上班時(shí)間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車(chē)返回學(xué)校.已知李老師騎電瓶車(chē)到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車(chē)的平均速度是步行速度的5倍,李老師到家開(kāi)門(mén)、取手機(jī)、啟動(dòng)電瓶車(chē)等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請(qǐng)你判斷李老師能否按時(shí)上班,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長(zhǎng)為(
A.12
B.15
C.12
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:( ﹣2)0+(﹣1)2014+ ﹣sin45°;
(2)先化簡(jiǎn),再求值:(a2b+ab)÷ ,其中a= +1,b= ﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由.

(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=2,BC=AC,D為AB的中點(diǎn),E為BC上一點(diǎn),將△BDE沿DE翻折,得到△FDEEF交AC于點(diǎn)G,則△ECG的周長(zhǎng)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

同步練習(xí)冊(cè)答案