分析 首先分析圖形,根據題意構造直角三角形.本題涉及多個直角三角形,應利用其公共邊構造關系式求解.
解答 解:如圖,過點B作BE⊥CD于點E,
根據題意,∠DBE=45°,∠CBE=30°.
∵AB⊥AC,CD⊥AC,
∴四邊形ABEC為矩形.
∴CE=AB=12m.
在Rt△CBE中,cot∠CBE=$\frac{BE}{CE}$,
∴BE=CE•cot30°=12×$\sqrt{3}$=12 $\sqrt{3}$.
在Rt△BDE中,由∠DBE=45°,
得DE=BE=12 $\sqrt{3}$.
∴CD=CE+DE=12( $\sqrt{3}$+1)≈32.4.
答:樓房CD的高度約為32.4m.
故答案為:32.4m.
點評 考查了解直角三角形的應用-仰角俯角問題,本題要求學生借助俯角構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (-3a2)3=-9a6 | B. | (6a6)÷(-3a2)=2a3 | C. | (a-3)2=a2-9 | D. | 4a-5a=-a |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com