【題目】如圖①,正方形ABCD是由兩個長為a、寬為b的長方形和兩個邊長分別為a、b的正方形拼成的.
(1)利用正方形ABCD面積的不同表示方法,直接寫出、、ab之間的關系式,這個關系式是 ;
(2)若m滿足,請利用(1)中的數量關系,求的值;
(3)若將正方形EFGH的邊、分別與圖①中的PG、MG重疊,如圖②所示,已知PF=8,NH=32,求圖中陰影部分的面積(結果必須是一個具體數值).
【答案】(1);(2)-2019;(3)576
【解析】
(1)由正方形ABCD的面積等于邊長的平方,或者等于兩個小正方形的面積+兩個小長方形的面積,可得關系式;
(2)設2020﹣m=a,m﹣2019=b,由完全平方公式可求解;
(3)設正方形EFGH的邊長為x,則PG=x﹣8,NG=32﹣x,由S陰=S正方形APGM+2S長方形PBNG+S正方形CQGN,代入后利用完全平方公式即可求解.
(1)根據正方形ABCD的面積等于邊長的平方,即(a+b)2,也等于兩個小正方形的面積+兩個小長方形的面積,即a2+b2+2ab,∴(a+b)2=a2+b2+2ab.
故答案為:(a+b)2=a2+b2+2ab;
(2)設2020﹣m=a,m﹣2019=b,
則(2020﹣m)(m﹣2019)=ab,a+b=1,a2+b2=4039.
∵(a+b)2=a2+b2+2ab,∴12=4039+2ab,∴ab=﹣2019,∴(2020﹣m)(m﹣2019)=﹣2019;
(3)設正方形EFGH的邊長為x,則PG=x﹣8,NG=32﹣x.
∵S陰=S正方形APGM+2S長方形PBNG+S正方形CQGN,∴,
∵(a+b)2=a2+b2+2ab,∴242=576.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC與△ADE中,∠BAC=∠DAE=90°,AD=AE,AB=AC,且B、D、E三點在一條直線上.
(1)求證:BD=CE.
(2)求∠BEC的度數.
(3)寫出BE與AE、CE的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長是( )
A. B. C. 5 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,點E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系.
(1)思路梳理
將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線,易證△AFG≌△AFE,故EF,BE,DF之間的數量關系為__;
(2)類比引申
如圖2,在圖1的條件下,若點E,F由原來的位置分別變到四邊形ABCD的邊CB,DC延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,直接寫出DE的長為________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=x﹣2與兩坐標軸分別交于點A,C,交y=(x>0)于點P,PQ⊥x軸于點Q,CQ=1.
(1)求反比例函數解析式;
(2)平行于y軸的直線x=m分別交y=x﹣2,y=(x>0)于點D,B(B在線段AP上方),若S△BOD=2,求m值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果批發(fā)市場,草莓的批發(fā)價格是每箱元,蘋果的批發(fā)價格是每箱元.
(1)若李心批發(fā)草莓,蘋果共箱,剛好花費元,則他購買草莓、蘋果各多少箱.
(2)李心有甲,乙兩個店鋪,每個店鋪在同一時間段內都能售出草莓,蘋果兩種水果合計箱,并且每售出一箱草莓和蘋果,甲店鋪獲毛利潤分別為元和元,乙店鋪獲毛利潤分別為元和元.現在,李心要將批發(fā)購進的箱草莓,箱蘋果分配給每個店鋪各箱.設分配給甲店草莓箱.
①根據信息填表:
草莓數量(箱) | 蘋果數量(箱) | 合計(箱) | |
甲店 | |||
乙店 |
②設李心獲取的總毛利潤為元,
(1)求與的函數關系式:
(2)若在保證乙店鋪獲得毛利潤不少于元的前提下,應怎樣分配水果,使總毛利潤最大,最大的總毛利潤是多少元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數根.
(1)是否存在實數a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數的實數a的整數值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com