【題目】如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.
【答案】
【解析】
如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x ),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質即可解決問題.
連接EG;
∵四邊形ABCD為矩形,
∴∠D=∠C=90°,DC=AB=4;
由題意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG與Rt△ECG中,
,
∴Rt△EFG≌Rt△ECG(HL),
∴FG=CG(設為x ),∠FEG=∠CEG;
同理可證:AF=AD=5,∠FEA=∠DEA,
∴∠AEG=×180°=90°,
而EF⊥AG,可得△EFG∽△AFE,
∴
∴22=5x,
∴x=,
∴CG=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E為BA延長線上的點,∠BAC的角平分線交BC于N,∠ABC的外角平分線交CA的延長線于點P,連接PN交AB于K,連接CK,則下列結論正確的是:①∠ABD=∠ACD;②DA平分∠EAC;③當點A在DB左側運動時,為定值;④∠CKN=30° ( )
A.①③④B.②③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李對某班全體同學的業(yè)余興趣愛好進行了一次調(diào)查,根據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計圖表.請據(jù)圖中提供的信息,解答下列問題:
(1)該班共有學生_____________人;
(2)在圖1中,請將條形統(tǒng)計圖補充完整;
(3)在圖2中,在扇形統(tǒng)計圖中,“音樂”部分所對應的圓心角的度數(shù)___________度:
(4)求愛好“書畫”的人數(shù)占該班學生數(shù)的百分數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,面積為4的正方形OABC的頂點O與坐標原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正方形ABCD是由兩個長為a、寬為b的長方形和兩個邊長分別為a、b的正方形拼成的.
(1)利用正方形ABCD面積的不同表示方法,直接寫出、、ab之間的關系式,這個關系式是 ;
(2)若m滿足,請利用(1)中的數(shù)量關系,求的值;
(3)若將正方形EFGH的邊、分別與圖①中的PG、MG重疊,如圖②所示,已知PF=8,NH=32,求圖中陰影部分的面積(結果必須是一個具體數(shù)值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為等邊△ABC中邊BC的中點,在邊DA的延長線上取一點E,以CE為邊、在CE的左下方作等邊△CEF,連結AF.若AB=4,AF=,則CF的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中以點A為圓心,AB為半徑作圓A交網(wǎng)格于點C(如圖(1)),過點C作圓的切線交網(wǎng)格于點D,以點A為圓心,AD為半徑作圓交網(wǎng)格于點E(如圖(2)).
問題:
(1)求∠ABC的度數(shù);
(2)求證:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC經(jīng)過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).
(4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形A′B′C′使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解方程: ;
(2)已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
①如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
②如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;
③如果△ABC是等邊三角形,試求這個一元二次方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com