【題目】如圖,邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A,

1)請(qǐng)求出拋物線的解析式;

2)連接OB,與拋物線交于點(diǎn)M,請(qǐng)求出M點(diǎn)坐標(biāo);

【答案】(1) 拋物線解析式為;(2) M

【解析】

1)利用待定系數(shù)法求出拋物線解析式即可;

(2)求出直線BO的函數(shù)解析式,聯(lián)立拋物線及直線解析式即可求出交點(diǎn)M的坐標(biāo).

(1)∵邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A,

C(0,8),A(8,0)B-8,8

設(shè)拋物線解析式為: ,

解得:

∴拋物線解析式為

2)設(shè)直線BO的函數(shù)解析式為y=kx

B-8,8)代入得:8=-8k

解得:k=-1

y=-x

OB與拋物線交于點(diǎn)M

解得

由圖可知M在第二象限

M

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買(mǎi)1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買(mǎi)2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是線段AB的垂直平分線,則∠CAD=CBD.請(qǐng)說(shuō)明理由:

解:∵ CD是線段AB的垂直平分線

AC=BC,AD=DB

ADCBDC中,

ADC≌和BDC( .

CAD=CBD .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】西安愛(ài)知中學(xué)為了全面提高學(xué)生的綜合素養(yǎng),學(xué)校組織了音樂(lè),籃球,跆拳道,美術(shù)共四個(gè)社團(tuán),初學(xué)生積極參加(每個(gè)學(xué)生限報(bào)一項(xiàng)),參加社團(tuán)的學(xué)生共有人,其中音樂(lè)社團(tuán)有人參加,籃球社團(tuán)參加的人數(shù)比音樂(lè)社團(tuán)參加的人數(shù)的兩倍少人,跆拳道社團(tuán)參加的人數(shù)比籃球社團(tuán)參加的人數(shù)一半多1

1)籃球社團(tuán)有 人.(用含的式子表示)

2)求籃球社團(tuán)比跆拳道社團(tuán)多多少人?(用含的式子表示)

3)若,求美術(shù)社團(tuán)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程

1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根。

2m為何整數(shù)時(shí),此方程的兩個(gè)根都是正整數(shù)?

3)若ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5,當(dāng)ABC是等腰三角形時(shí),求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一.為此某市教育局對(duì)該市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖①補(bǔ)充完整;

3)求出圖②中C級(jí)所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.

(1)求第二個(gè)方程的解;

(2)求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)過(guò)點(diǎn)A(3,4),直線ACx軸交于點(diǎn)C(6,0),過(guò)點(diǎn)Cx軸的垂線BC交反比例函數(shù)圖象于點(diǎn)B.

(1)求k的值與B點(diǎn)的坐標(biāo);

(2)在平面內(nèi)有點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,試寫(xiě)出符合條件的所有D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱(chēng)軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過(guò)點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案