【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動(dòng)點(diǎn)E、F分別從點(diǎn)B、D同時(shí)出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動(dòng),連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動(dòng)的時(shí)間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時(shí),四邊形EHFG為菱形;
(3)試探究:是否存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
【答案】(1)證明見解析;(2)t=1,(3)不存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形.
【解析】
(1)根據(jù)菱形的性質(zhì)得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根據(jù)全等三角形的性質(zhì)得到∠DFA=∠BEC,根據(jù)平行線的判定定理即可得到結(jié)論;
(2)過D作DM⊥AB于M,連接GH,EF,推出四邊形AECF是平行四邊形,根據(jù)菱形的判定定理即可得到四邊形EGFH是菱形,證得四邊形DMEF是矩形,于是得到ME=DF=t列方程即可得到結(jié)論;
(3)不存在,假設(shè)存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,根據(jù)矩形的性質(zhì)列方程即可得到結(jié)果.
(1)證明:∵動(dòng)點(diǎn)E、F同時(shí)運(yùn)動(dòng)且速度相等,
∴DF=BE,
∵四邊形ABCD是菱形,
∴∠B=∠D,AD=BC,AB∥DC,
在△ADF與△CBE中,
∴△ADF≌△CBE,
∴∠DFA=∠BEC,
∵AB∥DC,
∴∠DFA=∠FAB,
∴∠FAB=∠BEC,
∴AF∥CE;
(2)過D作DM⊥AB于M,連接GH,EF,
∴DF=BE=t,
∵AF∥CE,AB∥CD,
∴四邊形AECF是平行四邊形,
∵G、H是AF、CE的中點(diǎn),
∴GH∥AB,
∵四邊形EGFH是菱形,
∴GH⊥EF,
∴EF⊥AB,∠FEM=90°,
∵DM⊥AB,
∴DM∥EF,
∴四邊形DMEF是矩形,
∴ME=DF=t,
∵AD=4,∠DAB=60°,DM⊥AB,
∴
∴BE=4﹣2﹣t=t,
∴t=1,
(3)不存在,假設(shè)存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,
∵四邊形EHFG為矩形,
∴EF=GH,
∴EF2=GH2,
即解得t=0,0<t<4,
∴與原題設(shè)矛盾,
∴不存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.
(1)求出點(diǎn)C的坐標(biāo);
(2)若△OQC是等腰直角三角形,則t的值為________;
(3)若CQ平分△OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,如圖所示,則說明∠A′O′B′=∠AOB的依據(jù)是全等三角形的_____相等.其全等的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用甲、乙兩種原料配制成某種飲料,已知這兩種原料的維生素含量C及購這兩種原料的價(jià)格如下表:
甲 | 乙 | |
維生素C(單位/千克) | 600 | 100 |
原料價(jià)格(元/千克) | 8 | 4 |
現(xiàn)配制這種飲料10千克,要求至少含有4200單位的維生素C,并要求購買甲、乙兩種原料的費(fèi)用不超過72元.請問:既要符合要求又要成本最低,則購買甲種原料應(yīng)該在什么范圍之內(nèi),最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價(jià)格為3元/個(gè)的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過進(jìn)價(jià)的200%,請你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點(diǎn)A,與軸交于點(diǎn)B,點(diǎn)C是直線AB上一點(diǎn),它的坐標(biāo)為(,2),經(jīng)過點(diǎn)C作直線CD∥軸交軸于點(diǎn)D.
(1)求點(diǎn)C的坐標(biāo)及線段AB的長;
(2)已知點(diǎn)P是直線CD上一點(diǎn).
①若△POC的面積是4,求點(diǎn)P的坐標(biāo);
②若△POC是直角三角形,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).
(1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點(diǎn)M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關(guān)系是 ;
②如圖2,若BM≠DN,請判斷①中的數(shù)量關(guān)系是否仍成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在正方形ABCD的外側(cè),作△ADE和△DCF,連結(jié)AF、BE.特例探究:如圖,若△ADE和△DCF均為等邊三角形,試判斷線段AF與BE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片ABCD沿過點(diǎn)B的直線折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,折痕為BE(如圖1);再沿過點(diǎn)E的直線折疊,使點(diǎn)D落在BE上的點(diǎn)D′處,折痕為EG(如圖2);再展平紙片(如圖3),則圖3中∠α的大小為()
A.30°B.25.5°C.20°D.22.5°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com