【題目】如圖,已知矩形紙片BDEF和直角三角板BCA,點(diǎn)AEF上,ACDE,FE=3,C=90°,CBA=30°.

(1)寫(xiě)出三種不同類型的結(jié)論.

(2)將直角三角板繞點(diǎn)B旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,

①求點(diǎn)A與點(diǎn)E的最短距離;

②若將直角三角板繞點(diǎn)B從①中位置開(kāi)始順時(shí)針旋轉(zhuǎn)α(0≤α≤360),使∠BAE=90°,求α的度數(shù).

【答案】(1)見(jiàn)解析;(2)②2;②60°和300°.

【解析】

(1)Rt△ABC中,由∠C=90°,AC=可以求出∠BAC,AB、BC,通過(guò)AB=2BF∠FAB=30°,進(jìn)而得到AG=BG;

(2)①如圖,當(dāng)A、B、E共線時(shí),AE最小,求出BE長(zhǎng)即可得;

②分兩種情況畫(huà)出圖形,求出∠EBA′∠EBA″即可.

(1)Rt△ABC中,∵∠C=90°,AC,∠CBA=30°,

∴AB=2AC=2,BC==3,

∠BAC=90°-∠ABC=60°,

四邊形BDEF是矩形,

∴BF=ED=AC=,∠F=90°,

∴AB=2BF,∠FAB=30°,

∴∠GBA=∠GAB,

∴GB=GA,

三個(gè)不同類型的結(jié)論為:AB=2,∠BAC=90°=60°,GB=GA(答案不唯一,只要合理即可);

(2)①如圖,當(dāng)點(diǎn)B,AE三點(diǎn)共線時(shí),AE最短,連接BE,

四邊形BDEF是矩形,

∴∠D=90°,BD=EF=3,BF=DE=,

BE===4,

AE=BE-AB=4-2=2;

在圖1,∵∠BA′E=90°,

∴cos∠EBA′=,

∴∠EBA′=60°,

同理,在圖2,∠A″BE=60°,

∴旋轉(zhuǎn)角α=60°300°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB90°,以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交線段AB于點(diǎn)D;以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫(huà)弧,交線段AC于點(diǎn)E,連結(jié)CD

1)若∠A28°,求∠ACD的度數(shù).

2)設(shè)BCa,ACb

①線段AD的長(zhǎng)是方程x2+2axb20的一個(gè)根嗎?說(shuō)明理由.

②若ADEC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角△ABC BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.

(1)求證:S=absinC;

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.

1)請(qǐng)用樹(shù)狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了有效地落實(shí)國(guó)家精準(zhǔn)扶貧政策,切實(shí)關(guān)愛(ài)貧困家庭學(xué)生.某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了調(diào)查.發(fā)現(xiàn)每個(gè)班級(jí)都有貧困家庭學(xué)生,經(jīng)統(tǒng)計(jì)班上貧困家庭學(xué)生人數(shù)分別有1名、2名、3名、5名,共四種情況,并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:

(1)填空:a = ,b= ;

(2)求這所學(xué)校平均每班貧困學(xué)生人數(shù);

(3)某愛(ài)心人士決定從2名貧困家庭學(xué)生的這些班級(jí)中,任選兩名進(jìn)行幫扶,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求出被選中的兩名學(xué)生來(lái)自同一班級(jí)的概率.

貧困學(xué)生人數(shù)

班級(jí)數(shù)

1

5

2

2

3

a

5

1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PBCDO的切線,A、BE是切點(diǎn),CD分別交PA、PBC、D兩點(diǎn),若∠APB=40°,PA=5,則下列結(jié)論:PAPB=5;PCD的周長(zhǎng)為5;COD=70°.正確的個(gè)數(shù)為( 。

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn):如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問(wèn)題:

(1)如圖1,A=B=DEC=45°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;

(2)如圖2,在矩形ABCD中,A、B、C、D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫(huà)出矩形ABCD的邊AB上的強(qiáng)相似點(diǎn);  

(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究ABBC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案