【題目】如圖,銳角△ABC BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.

(1)求證:S=absinC;

(2)求證:.

【答案】(1)見解析;(2)見解析

【解析】

(1)過AAHBCH,可得AH=b×sinC,依據(jù)三角形ABC的面積=×BC×AH,即可得到S=absinC;

(2)過點CCDABD,在RtADCRtBDC中,∠ADC=BDC=90°,可得sinA=,sinB=,由此可得.同理可證,進而得到結論.

(1)如圖,過AAHBCH,則

RtACH中,sinC=,

AH=b×sinC,

∵三角形ABC的面積=×BC×AH,

S=absinC;

(2)如圖,過點CCDABD,

RtADCRtBDC中,∠ADC=BDC=90°,

sinA=,sinB=,

,,

過點AAHBCH,同理可證

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,過的垂線,交的延長線于,若,則的度數(shù)為( 。

A.45°B.30°C.22.5°D.15°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,若∠DAB的平分線AECDE,連結BE,且BE也平分∠ABC,則以下的命題中正確的個數(shù)是(

①BC+AD=AB ;E為CD中點

③∠AEB=90° ④SABE=S四邊形ABCD

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側同時施工.為了使山的另一側的開挖點C在AB的延長線上,設想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經過),與L相交于D點,經測量ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(≈1.414,精確到1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,ABC=90°,先把ABC繞點B順時針旋轉90°DBE后,再把ABC沿射線平移至FEG,DF、FG相交于點H

1)判斷線段DE、FG的位置關系,并說明理由;

2)連結CG,求證:四邊形CBEG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6cm,ABC=30°,動點P從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,運動時間為t秒(0≤t≤6),連接PQ,以PQ為直徑作⊙O.

(1)當t=1時,求BPQ的面積;

(2)設⊙O的面積為y,求yt的函數(shù)解析式;

(3)若⊙ORtABC的一條邊相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

如圖1,中,,于點,;如圖2,在圖1的基礎上,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,當其中一點到達終點時另外一點也隨之停止運動,設點運動的時間為秒.

1)求的長;

2)當的其中一邊與平行時(不重合),求的值;

3)點在線段上運動的過程中,是否存在以為腰的是等腰三角形?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】宜興在“創(chuàng)建文明城市”行動中,某社區(qū)計劃對面積為2160m2的區(qū)域進行綠化.經投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為480m2區(qū)域的綠化時,甲隊比乙隊少用4天.

(1)求甲、乙兩工程隊每天能完成綠化的面積;

(2)設甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務,求y與x的函數(shù)表達式;

(3)若甲隊每天綠化費用是0.8萬元,乙隊每天綠化費用為0.35萬元,且甲、乙兩隊施工的總天數(shù)不超過26天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌的飲水機接通電源后就進入自動程序開機加熱到水溫 100℃, 停止加熱,水溫開始下降,此時水溫 y(℃)與開機后用時 x(min)成反比 例關系,直至水溫降至 30℃,飲水機關機.飲水機關機后即刻自動開機,重 復上述自動程序.若在水溫為 30℃時,接通電源后,水溫 y(℃)和時間 x(min)的關系如圖所示,水溫從 100℃降到 35℃所用的時間是________min.

查看答案和解析>>

同步練習冊答案