【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC,以下結(jié)論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°.其中正確的結(jié)論有_____.(填序號)
【答案】①②③④
【解析】
根據(jù)角平分線的定義、三角形的內(nèi)角和定理、三角形的外角的性質(zhì)、平行線的判定一一判斷即可.
解:①設(shè)點A,B在直線MF上,
∵BD、CD分別平分△ABC的內(nèi)角∠ABC、外角∠ACP,
∴AD平分△ABC的外角∠FAC,
∴∠FAD=∠DAC,
∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠FAD=∠ABC,
∴AD∥BC,故①正確.
②∵BD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠MBC,
∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180°=90°,
∴EB⊥DB,故②正確,
③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,
∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,
∴∠BDC=∠BAC,
∵∠BAC+2∠ACB=180°,
∴∠BAC+∠ACB=90°,
∴∠BDC+∠ACB=90°,故③正確,
④∵∠BEC=180°﹣(∠MBC+∠NCB)=180°﹣(∠BAC+∠ACB+∠BAC+∠ABC)=180°﹣(180°+∠BAC),
∴∠BEC=90°﹣∠BAC,
∴∠BAC+2∠BEC=180°,故④正確,
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,BC=3,AB=4,,E為線段BC上任意一點,連接AE并延長與DC交于點G,若BE=2EC,則AE的邊長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,過點C作射線CM且滿足∠ACM=∠ABC.
(1)判斷CM與⊙O的位置關(guān)系,并證明;
(2)延長BC到D,使BC=CD,連接AD與CM交于點E,若⊙O的半徑為3,ED=2,求△ACE的外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點M,在點P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);
⑵點P、Q在運動過程中,設(shè)運動時間為t,當(dāng)t為何值時,△PBQ為直角三角形?
⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AE⊥AB,AF⊥AC,AE=AB,AF=AC,
(1)圖中EC、BF有怎樣的數(shù)量和位置關(guān)系?試證明你的結(jié)論.
(2)連接AM,求證:MA平分∠EMF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,點是上一點,將沿折疊,使點落在點處,連接,當(dāng)為直角三角形時,的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2,2,3,4四個數(shù)中隨機取兩個數(shù),第一個作為個位上的數(shù)字,第二個作為十位上的數(shù)字,組成一個兩位數(shù),則這個兩位數(shù)是2的倍數(shù)的概率是 ( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b經(jīng)過點A(0,3)和點B(4,a),且點B在正比例函數(shù)y=x的圖象上.
(1)求a的值.
(2)求k和b的值,并在給定的坐標系內(nèi)畫出這條直線.
(3)如果點C(,y1)和點D(﹣,y2)都在這條直線上,請比較y1和y2的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com