【題目】如圖1,點(diǎn)P、Q分別是邊長為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cms。

⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請(qǐng)直接寫出它的度數(shù);

⑵點(diǎn)P、Q在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PBQ為直角三角形?

⑶如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請(qǐng)求出它的度數(shù)。

【答案】見解析

【解析】試題分析:(1)因?yàn)辄c(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,所以AP=BQAB=AC∠B=∠CAP=60°,因而運(yùn)用邊角邊定理可知△ABQ≌△CAP.再用全等三角形的性質(zhì)定理及三角形的角間關(guān)系、三角形的外角定理,可求得CQM的度數(shù);

2)設(shè)時(shí)間為t,則AP=BQ=t,PB=4-t.分別就當(dāng)∠PQB=90°時(shí);當(dāng)∠BPQ=90°時(shí)利用直角三角形的性質(zhì)定理求得t的值;

3)首先利用邊角邊定理證得△PBC≌△QCA,再利用全等三角形的性質(zhì)定理得到∠BPC=∠MQC.再運(yùn)用三角形角間的關(guān)系求得∠CMQ的度數(shù).

試題解析:(1∠CMQ不變.

AC="BA," ∠A=∠B, AP="BQ,"

∴△ACP≌△BAQ, ∴∠ACP=∠BAQ,

∴∠CMQ=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC=60°

∴∠CMQ恒等于60°,不發(fā)生變化.

2)設(shè)運(yùn)動(dòng)了t

當(dāng)△PBQRt三角形時(shí) ∠B="60°"

當(dāng)∠BPQ=30°時(shí) ∴PB="AB-BP=4-t=2BQ=2t" 解得t=

當(dāng)∠PQB=30°時(shí) 則BQ=t=2PB=2AB-AP=24-t) 解得t=

3∠CMQ不變.

∵AC=CB,∠ACQ=120°=∠CBP, CQ="BP,"

∴△ACQ≌△CBP, ∴∠CAQ=∠BCP,

∴∠CMQ=∠CAQ+∠ACM=∠BCP+∠ACM=∠MCQ+∠ACM=∠ACQ=120°

∴∠CMQ恒等于120°,不會(huì)發(fā)生變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)E為矩形ABCD外一點(diǎn),連接AE,DE,且AE=DE,連接EB,EC分別與AD相交于點(diǎn)F,G.

(1)如圖1,求證:∠ABE=∠DCE;

(2)如圖2,若△BCE是等邊三角形,且AE=AB,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四對(duì)全等的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐探究

在數(shù)學(xué)實(shí)踐課上,小明提出了這樣的問題:分?jǐn)?shù)可以寫為小數(shù)形式,即0.反過來,無限循環(huán)小數(shù)0. 寫成分?jǐn)?shù)形式即為.那么無限循環(huán)小數(shù)0. 應(yīng)怎樣化為分?jǐn)?shù)呢?

小明是這樣思考的:

在學(xué)習(xí)解一元一次方程時(shí),當(dāng)變形到axba≠0)形式后,通過系數(shù)化1,兩邊同時(shí)除以a,得到方程的解x,就是分?jǐn)?shù)形式.

設(shè)0. x,即x=0.777…,又10x=7.77…,這里x、0.777…、10x、7.77…存在著關(guān)系,根據(jù)這一關(guān)系我就可以找到相等關(guān)系,列出方程.

請(qǐng)你閱讀小明的思考過程,把無限循環(huán)小數(shù)0. 化為分?jǐn)?shù)的過程寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點(diǎn)E、D,現(xiàn)測得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.
(1)求椅子的高度(即椅子的座板DF與地面MN之間的距離)(精確到1厘米)
(2)求椅子兩腳B、C之間的距離(精確到1厘米)(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線的上方時(shí),解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請(qǐng)直接寫出的角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC、ACB的平分線相交于O,MN過點(diǎn)O且與BC平行.△ABC的周長為20,AMN的周長為12,則BC的長為( )

A. 10 B. 16 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)共有8個(gè)班,241名同學(xué),歷史老師為了了解新中考模式下該校八年級(jí)學(xué)生選修歷史學(xué)科的意向,請(qǐng)小紅,小亮,小軍三位同學(xué)分別進(jìn)行抽樣調(diào)查.三位同學(xué)調(diào)查結(jié)果反饋如下:

小紅、小亮和小軍三人中,你認(rèn)為哪位同學(xué)的調(diào)查結(jié)果較好地反映了該校八年級(jí)同學(xué)選修歷史的意向,請(qǐng)說出理由,并由此估計(jì)全年級(jí)有意向選修歷史的同學(xué)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)y= 的圖象與性質(zhì). 下面是小文的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)如表是y與x的幾組對(duì)應(yīng)值.

x

﹣3

﹣2

﹣1

0

2

3

4

5

y

0

2

如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).

①觀察圖中各點(diǎn)的位置發(fā)現(xiàn):點(diǎn)A1和B1 , A2和B2 , A3和B3 , A4和B4均關(guān)于某點(diǎn)中心對(duì)稱,則該點(diǎn)的坐標(biāo)為;
②小文分析函數(shù)y= 的表達(dá)式發(fā)現(xiàn):當(dāng)x<1時(shí),該函數(shù)的最大值為0,則該函數(shù)圖象在直線x=1左側(cè)的最高點(diǎn)的坐標(biāo)為;
(3)小文補(bǔ)充了該函數(shù)圖象上兩個(gè)點(diǎn)( ,﹣ ),( , ), ①在上圖中描出這兩個(gè)點(diǎn),并畫出該函數(shù)的圖象;

②寫出該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)請(qǐng)?jiān)趫D中作出△ABC 關(guān)于 y 軸對(duì)稱的△,并求出△的面積;

(2)寫出 、 的坐標(biāo) ____________________;

(3)若△DBC 與△ABC 全等,則 D 的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案