【題目】為了響應(yīng)上級教委的“海航招飛”號召,某校從九年級應(yīng)屆男生中抽取視力等生理指標(biāo)合格的部分學(xué)生進行了文化課初檢,教務(wù)處負責(zé)同志將測測試結(jié)果分為四個等級:甲、乙、丙、丁,然后將相關(guān)數(shù)據(jù)整理為兩幅不完整的統(tǒng)計圖,請依據(jù)相關(guān)信息解答下列問題:
(1)本次參加文化課初檢的男生人數(shù)為 ;
(2)扇形圖中m的數(shù)值為 ,把條形統(tǒng)計圖補充完整;
(3)據(jù)統(tǒng)計,全省生理指標(biāo)過關(guān)的九年級男生有2400名左右,若規(guī)定文化課等級為“甲”“乙”的可進行文化課二檢,請估計進入二檢的男生有 ;
(4)本次抽檢進入“甲”等的4名男生中九(1)、九(2)班各占2名,若從“甲”等學(xué)生中隨機抽取兩名男生進行調(diào)研,請用樹形圖表示抽到的兩名男生恰為九(1)班的概率.
【答案】(1)40人;(2)36,見解析;(3)1080人;(4)見解析,.
【解析】
(1)用乙等級人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以甲等級人數(shù)的百分比得到m的值,然后計算出丙等級的人數(shù)后補全條形統(tǒng)計圖;
(3)用2400乘以樣本中“甲”“乙”等級所占的百分比即可;
(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出抽到的兩名男生恰為九(1)班的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)14÷35%=40,
所以本次參加文化課初檢的男生人數(shù)為40人;
(2)甲等級的百分比=×100%=10%,
所以m°=360°×10%=36°,
即m的值為36;
丙等級的人數(shù)為40×25%=10(人),
補全條形統(tǒng)計圖:
(3)2400×=1080,
所以估計進入二檢的男生有1080人;
故答案為40人;36;1080人;
(4)畫樹狀圖為:(用A、B表示九(1)的兩名學(xué)生;用a、b表示九(2)的兩名學(xué)生)
共有12種等可能的結(jié)果數(shù),其中抽到的兩名男生恰為九(1)班的結(jié)果數(shù)為2,
所以抽到的兩名男生恰為九(1)班的概率=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點A(-3,4).
(1)求b的值;
(2)過點A作軸的平行線交拋物線于另一點B,在直線AB上任取一點P,作點A關(guān)于直線OP的對稱點C;
①當(dāng)點C恰巧落在軸時,求直線OP的表達式;
②連結(jié)BC,求BC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD為BC邊上的中線,E為AD上一動點,設(shè)DE=nEA,連接CE并延長,交AB于點F.
(1)嘗試探究:如圖1,當(dāng)∠BAC=90°,∠B=30°,DE=EA時,BF,BA之間的數(shù)量關(guān)系是 ;
(2)類比延伸:如圖2,當(dāng)△ABC為銳角三角形,DE=EA時,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由;
(3)拓展遷移:如圖3,當(dāng)△ABC為銳角三角形,DE=nEA時,請直接寫出BF,BA之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的外接圓,是直徑,是外一點且滿足,連接.
(1)求證:是的切線;
(2)若,,,求的長;
(3)如圖2,當(dāng)時,與交于點,試寫出、、之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物的頂部有一塊標(biāo)識牌 CD,小明在斜坡上 B 處測得標(biāo)識牌頂部C 的仰角為 45°, 沿斜坡走下來在地面 A 處測得標(biāo)識牌底部 D 的仰角為 60°,已知斜坡 AB 的坡角為 30°,AB=AE=10 米.則標(biāo)識牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如圖1,A、D、C在同一直線上時,=_______,=_______;
(2)在圖1的基礎(chǔ)上,固定△ABC,將△CDE繞C旋轉(zhuǎn)一定的角度α(0°<α<360°),如圖2,連接AD、BE.
① 的值有沒有改變?請說明理由.
②拓展研究:若AB=1,DE=,當(dāng) B、D、E在同一直線上時,請計算線段AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點坐標(biāo)分別為O(0,0),A(6,0),B(4,3),C(0,3).動點P從點O出發(fā),以每秒個單位長度的速度沿邊OA向終點A運動;動點Q從點B同時出發(fā),以每秒1個單位長度的速度沿邊BC向終點C運動.設(shè)運動的時間為t秒,PQ2=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=時,求t的值;
(3)連接OB交PQ于點D,若雙曲線(k≠0)經(jīng)過點D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,, ,動點,同時從點出發(fā),點以的速度沿折線運動到點,點以的速度沿運動到點,設(shè),同時出發(fā)時,的面積為,則與的函數(shù)圖象大致是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com