【題目】如圖1,在ABCD中,AB=2,BC=6,∠D=60°,點(diǎn)E從B點(diǎn)出發(fā)沿著線段BC每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng),同時(shí)點(diǎn)F從B點(diǎn)出發(fā)沿著射線BC每秒2單位長(zhǎng)度的速度向C運(yùn)動(dòng),以EF為邊在直線BC上方作等邊△EFG,設(shè)點(diǎn)E、F的運(yùn)動(dòng)時(shí)間為t秒,其中0<t≤4.
(1)當(dāng)t= 秒時(shí),點(diǎn)G落在線段AD上;
(2)如圖2,連接BG,試說(shuō)明:無(wú)論t為何值,BG始終平分∠ABC;
(3)求△EFG與ABCD重疊部分面積y與t之間的函數(shù)關(guān)系式,當(dāng)t取何值時(shí),y有最大值?并求出y的最大值.
【答案】(1)2;(2)理由見解析;(3)y;當(dāng)t時(shí),y的最大值為:.
【解析】
(1)設(shè)等邊三角形的邊長(zhǎng)為a,等邊△EFG的邊長(zhǎng)為t,當(dāng)點(diǎn)G落在線段AD上,即等邊△EFG的高等于ABCD的高.
(2)如圖1,△GEF為邊長(zhǎng)為t的等邊三角形,BE=t=EF=GE,則∠GBE=∠EGB,即可求解;
(3)①當(dāng)0<t≤2時(shí),重疊部分為△EFG,y=S△EFG=t2;②當(dāng)2<t≤3時(shí),如圖2,重疊部分為四邊形HMEF,y=S△EFG-S△HMG=t2-(t-2)2=t-;③當(dāng)3<t≤4時(shí),y=S△GEF-(S△GHM+S△MND+S△NCF),即可求解.
(1)設(shè)等邊三角形的邊長(zhǎng)為a,則面積為:a2,
ABCD的高為ABsin∠ABC=ABsin∠D
等邊△EFG的邊長(zhǎng)為t,則高為t
當(dāng)點(diǎn)G落在線段AD上,t,解得:t=2.
故答案為:2;
(2)如圖1,△GEF為邊長(zhǎng)為t的等邊三角形,
BE=t=EF=GE,則∠GBE=∠EGB,
∠GBE=60°=2∠GBE=2∠EGB,
故∠GBE=30°,而∠ABC=∠D=60°,
∠ABG=∠GBE=30°,
∴BG始終平分∠ABC;
(3)△EFG始終為邊長(zhǎng)為t的等邊三角形,則S△EFGt2,
①當(dāng)0<t≤2時(shí),重疊部分為△EFG,
y=S△EFGt2;
此時(shí),當(dāng)t=2時(shí),y最大值為;
②當(dāng)2<t≤3時(shí),如圖2,重疊部分為四邊形HMEF,
則△HMG為邊長(zhǎng)為(t﹣2)的等邊三角形,
則y=S△EFG﹣S△HMGt2(t﹣2)2t;
當(dāng)t=3時(shí),y的最大值為:2;
③當(dāng)3<t≤4時(shí),
△GMH、△MND、△FCN均為等邊三角形,
△GMH的邊長(zhǎng)HG=GE﹣HE=GE﹣AB=t﹣2,
△FCN的邊長(zhǎng)FC=EF﹣EC=t﹣(6﹣t)=2t﹣6,
△MND的邊長(zhǎng)MN=MF﹣NF=2﹣(2t﹣6)=8﹣2t,
y=S△GEF﹣(S△GHM+S△MND+S△NCF)[t2﹣(t﹣2)2﹣(2t﹣6)2﹣(8﹣2t)2]=﹣2t2+15t﹣26,
當(dāng)t時(shí),y的最大值為:;
綜上,y;
當(dāng)t時(shí),y的最大值為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“過(guò)圓外一點(diǎn)作這個(gè)圓的兩條切線”的尺規(guī)作圖過(guò)程.
已知:⊙O及⊙O外一點(diǎn)P.
求作:直線PA和直線PB,使PA切⊙O于點(diǎn)A,PB切⊙O于點(diǎn)B.
作法:如圖,
①連接OP,分別以點(diǎn)O和點(diǎn)P為圓心,大于OP的同樣長(zhǎng)為半徑作弧,兩弧分別交于點(diǎn)M,N;
②連接MN,交OP于點(diǎn)Q,再以點(diǎn)Q為圓心,OQ的長(zhǎng)為半徑作弧,交⊙O于點(diǎn)A和點(diǎn)B;
③作直線PA和直線PB.
所以直線PA和PB就是所求作的直線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OP是⊙Q的直徑,
∴ ∠OAP=∠OBP=________°( )(填推理的依據(jù)).
∴PA⊥OA,PB⊥OB.
∵OA,OB為⊙O的半徑,
∴PA,PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)D、E.過(guò)點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無(wú)論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)﹣3<x<1時(shí),隨著x的增大,y1﹣y2的值先增大后減小;
④四邊形AECD為正方形.
其中正確的是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測(cè)量大橋斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測(cè)量.測(cè)量結(jié)果如下表.
項(xiàng)目 | 內(nèi)容 | ||
課題 | 測(cè)量斜拉索頂端到橋面的距離 | ||
測(cè)量示意圖 | 說(shuō)明:大橋兩側(cè)一組斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi). | ||
測(cè)量數(shù)據(jù) | ∠A的度數(shù) | ∠B的度數(shù) | AB的長(zhǎng)度 |
45° | 30° | 240米 | |
… | … |
請(qǐng)幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求斜拉索頂端點(diǎn)C到AB的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):=1.414,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)購(gòu)已經(jīng)成為一種時(shí)尚,某網(wǎng)絡(luò)購(gòu)物平臺(tái)“雙十一”全天交易額逐年增長(zhǎng),2016年交易額為500億元,2018年交易額為720億元。
(1)2016年至2018年“雙十一”交易額的年平均增長(zhǎng)率是多少?
(2)若保持原來(lái)的增長(zhǎng)率,試計(jì)算2019年該平臺(tái)“雙十一”的交易額將達(dá)到多少億元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班13位同學(xué)參加每周一次的衛(wèi)生大掃除,按學(xué)校的衛(wèi)生要求需要完成總面積為60m2的三個(gè)項(xiàng)目的任務(wù),三個(gè)項(xiàng)目的面積比例和每人每分鐘完成各所示:項(xiàng)目的工作量如圖:
(1)從統(tǒng)計(jì)圖中可知:擦玻璃的面積占總面積的百分比為 ,每人每分鐘擦課桌椅 m2;
(2)掃地拖地的面積是 m2;
(3)他們一起完成掃地和拖地任務(wù)后,把這13人分成兩組,一組去擦玻璃,一組去擦課桌椅,如果你是衛(wèi)生委員,該如何分配這兩組的人數(shù),才能最快地完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要建一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),養(yǎng)雞場(chǎng)的一邊靠墻(墻長(zhǎng)25米),另三邊用竹籬笆圍成,竹籬笆的長(zhǎng)為40米,若要圍成的養(yǎng)雞場(chǎng)的面積為180平方米,求養(yǎng)雞場(chǎng)的長(zhǎng)、寬各為多少米,設(shè)與墻平行的一邊長(zhǎng)為米.
(1)填空:(用含的代數(shù)式表示)另一邊長(zhǎng)為 米;
(2)列出方程,并求出問(wèn)題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) M 為 AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過(guò)點(diǎn) C 作 CD⊥BN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB=20,MD=14,則 NE 的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,二次三項(xiàng)式﹣x2+2x+3.
(1)關(guān)于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m為整數(shù))的根為有理數(shù),求m的值;
(2)在平面直角坐標(biāo)系中,直線y=﹣2x+n分別交x,y軸于點(diǎn)A,B,若函數(shù)y=﹣x2+2|x|+3的圖象與線段AB只有一個(gè)交點(diǎn),求n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com