【題目】如圖,某居民樓的前面有一圍墻,在點(diǎn)處測得樓頂的仰角為,在處測得樓頂的仰角為,且的高度為2米,之間的距離為20米(,,在同一條直線上).
(1)求居民樓的高度.
(2)請(qǐng)你求出、兩點(diǎn)之間的距離.(參考數(shù)據(jù):,,,結(jié)果保留整數(shù))
【答案】(1)居民樓的高約為22米;(2)、之間的距離約為48米
【解析】
(1)過點(diǎn)作,垂足為,設(shè)為在中及中,根據(jù)三角函數(shù)即可求得答案;
(2)方法一:在中,根據(jù),即可求得AE的值.
方法二:在中,根據(jù),即可求得AE的值.
(1)如圖,過點(diǎn)作,垂足為,
∴四邊形為矩形,
∴,.
設(shè)為.
在中,,
∴,
∴.
在中,,,
∵,
∴,
∴.
答:居民樓的高約為22米.
(2)方法一:由(1)可得.
在中,,
∴,
∴,
即、之間的距離約為46米.
方法二:由(1)得.
在中,,
∴,
∴,
即、之間的距離約為48米.
(注:此題學(xué)生算到46或48都算正確)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個(gè)交點(diǎn)坐標(biāo)為(1,2),另一個(gè)交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)
(1)求k,a,c的值;
(2)過點(diǎn)A(0,m)(0<m<4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家他60歲時(shí)完成的直指算法統(tǒng)宗是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法對(duì)書中某一問題改編如下:
一百饅頭一百僧,大僧三個(gè)更無爭;
小僧三人分一個(gè),大僧共得幾饅頭.
一百饅頭一百僧,大僧三個(gè)更無爭;
小僧三人分一個(gè),大僧共得幾饅頭.
意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè)正好分完,大和尚共分得 個(gè)饅頭
A. 25B. 72C. 75D. 90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新函數(shù)(如圖所示),請(qǐng)你在圖中畫出這個(gè)新圖象,當(dāng)直線y=﹣x+m與新圖象有4個(gè)交點(diǎn)時(shí),m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操場上有三根測桿AB,MN和XY,MN=XY,其中測桿AB在太陽光下某一時(shí)刻的影子為BC(如圖中粗線).
(1)畫出測桿MN在同一時(shí)刻的影子NP(用粗線表示),并簡述畫法;
(2)若在同一時(shí)刻測桿XY的影子的頂端恰好落在點(diǎn)B處,畫出測桿XY所在的位置(用實(shí)線表示),并簡述畫法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,ABAD=BCAE.
(1)求證:∠BAC=∠AED;
(2)在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,PB切⊙O于點(diǎn)B,且∠APB=60°.
(1)求∠BAC的度數(shù);
(2)若PA=,求點(diǎn)O到弦AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC,AB=6,點(diǎn)E是斜邊AB上的一點(diǎn)(端點(diǎn)A、B除外),將△CAE繞C逆時(shí)針旋轉(zhuǎn)90°至△CBF,連接EF,且EF的中點(diǎn)為O,連OB、OC,設(shè)AE=x,
(1)求證:OB=OC;
(2)用x表示△BEF的面積S△BEF,并求S△BEF的最大值;
(3)用x表示四邊形BECF的周長C,并求C的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.若sin∠DFE=,則tan∠EBC的值為( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com