【題目】程大位是我國明朝商人,珠算發(fā)明家他60歲時(shí)完成的直指算法統(tǒng)宗是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法對(duì)書中某一問題改編如下:
一百饅頭一百僧,大僧三個(gè)更無爭(zhēng);
小僧三人分一個(gè),大僧共得幾饅頭.
一百饅頭一百僧,大僧三個(gè)更無爭(zhēng);
小僧三人分一個(gè),大僧共得幾饅頭.
意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè)正好分完,大和尚共分得 個(gè)饅頭
A. 25B. 72C. 75D. 90
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過三點(diǎn)
(1)求拋物線的解析式;
(2)在直線上方的拋物線上是否存在一點(diǎn),使的面積等于的面積的一半?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是否存在點(diǎn),使以,,,為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,垂足為點(diǎn),是外角的平分線,,垂足為點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
當(dāng)滿足什么條件時(shí),四邊形是一個(gè)正方形?并給出證明.
在的條件下,若,求正方形周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+3的對(duì)稱軸為直線x=﹣1,分別與x軸交于點(diǎn)A,B(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求b的值;
(2)若將線段BC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CD,問:點(diǎn)D在該拋物線上嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)在斜邊上,以為圓心,為半徑作圓,分別與、相交于點(diǎn)、,連接,已知.
(1)求證:是的切線;
(2)若,,求劣弧與弦所圍陰影圖形的面積;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn),過點(diǎn)作軸,垂足為點(diǎn),且。
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式的解集;
(3)若是反比例函數(shù)圖象上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某居民樓的前面有一圍墻,在點(diǎn)處測(cè)得樓頂的仰角為,在處測(cè)得樓頂的仰角為,且的高度為2米,之間的距離為20米(,,在同一條直線上).
(1)求居民樓的高度.
(2)請(qǐng)你求出、兩點(diǎn)之間的距離.(參考數(shù)據(jù):,,,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣x+c與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E,點(diǎn)P在BC下方的拋物線上運(yùn)動(dòng).
(1)求該拋物線的解析式;
(2)當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)四邊形ACPB的面積最大時(shí),求點(diǎn)P的坐標(biāo)并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com