【題目】如圖,在等腰中,,、分別是邊、上的中線,與交于點(diǎn),若,,則的面積等于____________.
【答案】
【解析】
過(guò)E作EG⊥BC于G,根據(jù)已知條件得到點(diǎn)F是△ABC的重心,求得AD=3DF=9,根據(jù)等腰三角形的性質(zhì)得到AD⊥BC,BD=CD,根據(jù)平行線分線段成比例定理得到EG=,根據(jù)勾股定理得到BG=,根據(jù)三角形的面積公式即可得到結(jié)論.
過(guò)E作EG⊥BC于G,
∵AD、BE分別是邊BC、AC上的中線,
∴點(diǎn)F是△ABC的重心,
∴AD=3DF=9,
∵AB=AC,AD是邊BC上的中線,
∴AD⊥BC,BD=CD,
∵BE是邊AC上的中線,
∴AE=CE,
∵AD⊥BC,EG⊥BC,
∴EG∥AD,
∴EG=
∵BE=6,
∴BC=
∴BG=,
∴△ABC的面積=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與軸交于點(diǎn),與軸交于點(diǎn),一次函數(shù)經(jīng)過(guò)點(diǎn)與軸交于點(diǎn).
(1)求直線的解析式;
(2)點(diǎn)為軸上方直線上一點(diǎn),點(diǎn)為線段的中點(diǎn),點(diǎn)為線段的中點(diǎn),連接,取的中點(diǎn),射線交軸于點(diǎn),點(diǎn)為線段的中點(diǎn),點(diǎn)為線段的中點(diǎn),連接,求證:;
(3)在(2)的條件下,延長(zhǎng)至,使,連接、,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng).將大小不同的正方形與正方形按圖1位置放置,與在同一條直線上,與在同一條直線上.
(1)小明發(fā)現(xiàn)且,請(qǐng)你給出證明;
(2)如圖2,小明將正方形繞點(diǎn)轉(zhuǎn)動(dòng),當(dāng)點(diǎn)恰好落在線段上時(shí)猜想線段和的位置關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課時(shí),王明、趙麗、高潔、李虎四位同學(xué)圍成一圈玩?zhèn)髑蛴螒颍僭O(shè)傳球的對(duì)象都是隨機(jī)的),若開(kāi)始時(shí)球在王明手中.
(1)經(jīng)過(guò)一次傳球后,球在高潔手里的概率是多少?
(2)求:經(jīng)過(guò)兩次傳球后,球又回到王明手中的概率(用樹(shù)狀圖或列表法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,⊙O的半徑OC垂直弦AB于點(diǎn)H,連接BC,過(guò)點(diǎn)A作弦AE∥BC,過(guò)點(diǎn)C作CD∥BA交EA延長(zhǎng)線于點(diǎn)D,延長(zhǎng)CO交AE于點(diǎn)F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi),拋物線經(jīng)過(guò)原點(diǎn)、點(diǎn),又與軸正半軸相交于點(diǎn),,點(diǎn)是線段上的一點(diǎn),過(guò)點(diǎn)作,與拋物線交于點(diǎn),且點(diǎn)在第一象限內(nèi).
備用圖
(1)求拋物線的表達(dá)式;
(2)若,求點(diǎn)的坐標(biāo);
(3)過(guò)點(diǎn)作軸,分別交直線、軸于點(diǎn)、,若的面積等于的面積的倍,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC=4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到矩形A'B'C'D',此時(shí)點(diǎn)B'恰好落在邊AD上.
(1)畫(huà)出旋轉(zhuǎn)后的圖形;
(2)連接B'B,若∠AB'B=75°,求旋轉(zhuǎn)角及AB長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,是直角三角形,,點(diǎn)、的橫坐標(biāo)是一元二次方程的兩根(),直線與軸交于,點(diǎn)的坐標(biāo)為.
(1)求直線的函數(shù)表達(dá)式;
(2)在軸上找一點(diǎn),連接,使得以點(diǎn)、、為頂點(diǎn)的三角形與相似(不包括全等),并求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)、分別是和上的動(dòng)點(diǎn),連接,點(diǎn)、分別從、同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)直接寫(xiě)出幾秒時(shí)以點(diǎn)、、為頂點(diǎn)的三角形與相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與拋物線y=ax2﹣4ax+3a的對(duì)稱軸交于點(diǎn)A(m,﹣1),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)恰為拋物線的頂點(diǎn).
(1)求拋物線的對(duì)稱軸及a的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線y=kx+b(k≠0)與拋物線圍成的封閉區(qū)域(不含邊界)為W.
①當(dāng)k=1時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com