【題目】如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF在上取動點G,過點G作切線交AE、BF的延長線于點D、C,當(dāng)點G運動時,設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為( 。
A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)
C.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)D.以上都不是
【答案】D
【解析】
延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應(yīng)角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.
解:延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,
∵AE,BF為圓O的切線,
∴OE⊥AE,OF⊥FB,
∴∠AEO=∠BFO=90°,
在Rt△AEO和Rt△BFO中,,
∴Rt△AEO≌Rt△BFO(HL),
∴∠A=∠B,
∴△QAB為等腰三角形,
又∵O為AB的中點,即AO=BO,
∴QO⊥AB,
∴∠QOB=∠QFO=90°,
又∵∠OQF=∠BQO,
∴△QOF∽△QBO,
∴∠B=∠QOF,
同理可以得到∠A=∠QOE,
∴∠QOF=∠QOE,
根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,
∴∠DOC=∠EOF=∠A=∠B,
又∵∠GCO=∠FCO,
∴△DOC∽△OBC,
同理可以得到△DOC∽△DAO,
∴△DAO∽△OBC,
,
∴ADBC=AOOB=AB2,即xy=AB2為定值,
設(shè)k=AB2,得到y=,
則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與直線x=2相交于點A,將拋物線y=x2沿線段OA從點O運動到點A,使其頂點始終在線段OA上,拋物線與直線x=2相交于點P,則點P移動的路徑長為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的半徑為2,圓心坐標(biāo)為(4,0),y軸上有點B(0,3),點C是⊙A上的動點,點P是BC的中點,則OP的范圍是( 。
A.B.2≤OP≤4C.≤OP≤D.3≤OP≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知AB⊥l,DE⊥l,垂足分別為B、E,且C是l上一點,∠ACD=90°,求證:△ABC∽△CED;
(2)如圖2,在四邊形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+6與x軸、y軸分別交于A,B兩點,將直線l1沿著y軸正方向平移一段距離得到直線l2交y軸于點M,且l1與l2之間的距離為3,點C(x,y)是直線11上的一個動點,過點C作AB的垂線CD交y軸于點D.
(1)求直線l2的解析式;
(2)當(dāng)C運動到什么位置時,△AOD的面積為21,求出此時點C的坐標(biāo);
(3)連接AM,將△ABM繞著點M旋轉(zhuǎn)得到△A'B'M',在平面內(nèi)是否存在一點N.使四邊形AMA'N為矩形?若存在,求出點N的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在八月十五“中秋節(jié)”來臨前夕,購進一種品牌的月餅,每盒進價40元,根據(jù)以往的銷售經(jīng)驗發(fā)現(xiàn):當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
寫出每天的銷售量盒與每盒月餅上漲元之間的函數(shù)關(guān)系式.
當(dāng)每盒售價定為多少元時,當(dāng)天的銷售利潤元最大?最大利潤是多少?
為穩(wěn)定物價,有關(guān)管理部門限定,這種月餅每盒的利潤不得高于進價的,那么超市每天獲得最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線與y軸交于點A.
(1)直接寫出點A的坐標(biāo);
(2)點A、B關(guān)于對稱軸對稱,求點B的坐標(biāo);
(3)已知點,.若拋物線與線段PQ恰有兩個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)拋物線y=ax2﹣2x+2經(jīng)過點E(2,2),其頂點為C點.
①求拋物線的解析式,并直接寫出C點坐標(biāo);
②將直線y=x沿y軸向上平移b(b>0)個單位長度交拋物線于A、B兩點,若∠ACB=90°,求b的值.
(2)是否存在點D(1,m),使拋物線y=x2﹣x+上任意一點P到x軸的距離等于P點到點D的距離,若存在,請求點D的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com