【題目】在□ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.
【答案】(1)證明見解析(2)
【解析】分析:
(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結合∠EDB=90°即可得到四邊形BFDE是矩形;
(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結合BE=DF可得BE=5,由此可得AB=8,結合BF=DE=4即可求得tan∠BAF=.
詳解:
(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵AE=CF,
∴BE=DF,
∴四邊形BFDE是平行四邊形.
∵DE⊥AB,
∴∠DEB=90°,
∴四邊形BFDE是矩形;
(2)在Rt△BCF中,由勾股定理,得
AD =,
∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠DFA=∠FAB.
∵AF平分∠DAB
∴∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴DF=AD=5,
∵四邊形BFDE是矩形,
∴BE=DF=5,BF=DE=4,∠ABF=90°,
∴AB=AE+BE=8,
∴tan∠BAF=.
科目:初中數(shù)學 來源: 題型:
【題目】有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.
(1)求被剪掉陰影部分的面積:
(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,AB=2,點C在上運動,且∠ACB=30°.
(1)求⊙O的半徑;
(2)設點C到直線AB的距離為x,圖中陰影部分的面積為y,求y與x之間的函數(shù)關系,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.5.其中說法正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.
治理楊絮一一您選哪一項?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調整樹種結構,逐漸更換現(xiàn)有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產生飛絮
E.其他
根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)本次接受調查的市民共有 人;
(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是 ;
(3)請補全條形統(tǒng)計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△MNQ中,MQ≠NQ.
(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;
(2)參考(1)中構造全等三角形的方法解決下面問題:
如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形中,,,,是的中點,點以每秒1個單位長度的速度從點出發(fā),沿向點運動;點同時以每秒2個單位長度的速度從點出發(fā),沿向點運動,點停止運動時,點也隨之停止運動.當運動時間______秒時,以點,,,為頂點的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com