一次函數(shù) 的自變量的取值范圍是         

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在同一直角坐標(biāo)系中,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于A(-1,0)、點(diǎn)B(3,0)和點(diǎn)C(0,-3),一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)二次函數(shù)的解析式為
 
;
(2)當(dāng)自變量x
 
時(shí),兩函數(shù)的函數(shù)值都隨x增大而增大;
(3)當(dāng)自變量
 
時(shí),一次函數(shù)值大于二次函數(shù)值;
(4)當(dāng)自變量x
 
時(shí),兩函數(shù)的函數(shù)值的積小于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)九年義務(wù)教育三年制初級(jí)中學(xué)教科書(shū)代數(shù)第三冊(cè)中,有以下幾段文字:“對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)M,都有唯一的一對(duì)有序?qū)崝?shù)(x,y)和它對(duì)應(yīng);對(duì)于任意一對(duì)有序?qū)崝?shù)(x,y),在坐標(biāo)平面內(nèi)都有唯一的一點(diǎn)M和它對(duì)應(yīng),也就是說(shuō),坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.”“一般地,對(duì)于一個(gè)函數(shù),如果把自變量x與函數(shù)y的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn),這些點(diǎn)所組成的圖形,就是這個(gè)函數(shù)的圖象.”“實(shí)際上,所有一次函數(shù)的圖象都是一條直線.”“因?yàn)閮牲c(diǎn)確定一條直線,所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線,就可以了.”由此可知:滿足函數(shù)關(guān)系式的有序?qū)崝?shù)對(duì)所對(duì)應(yīng)的點(diǎn),一定在這個(gè)函數(shù)的圖象上;反之,函數(shù)圖象上的點(diǎn)的坐標(biāo),一定滿足這個(gè)函數(shù)的關(guān)系式.另外,已知直線上兩點(diǎn)的坐標(biāo),便可求出這條直線所對(duì)應(yīng)的一次函數(shù)的解析式.
問(wèn)題1:已知點(diǎn)A(m,1)在直線y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點(diǎn)B(-2,n)在直線y=2x-1上,求n的方法是:
 
,∴n=
 
;
問(wèn)題2:已知某個(gè)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(3,5)和Q(-4,-9),求這個(gè)一次函數(shù)的解析式時(shí),一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿足已知條件的一次函數(shù)的解析式為:
 
.這個(gè)一次函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為:
 
,在右側(cè)給定的平面直角坐標(biāo)系中,描出這兩個(gè)點(diǎn),并畫(huà)出這個(gè)函數(shù)的圖象.像解決問(wèn)題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是改善學(xué)習(xí)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識(shí)歸納整理如下:
一次函數(shù)與方程的關(guān)系:

    <menu id="is4k8"><dd id="is4k8"></dd></menu>
  1. <li id="is4k8"></li>
    (1)一次函數(shù)的解析式就是一個(gè)二元一次方程;
    (2)點(diǎn)B的橫坐標(biāo)是方程①的解;
    (3)點(diǎn)C的坐標(biāo)(x,y)中的x,y的值是方程組②的解.一次函數(shù)與不等式的關(guān)系;
    (1)函數(shù) y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式③的解集;
    (2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式④的解集;(1)請(qǐng)根據(jù)以上方框中的內(nèi)容在下面數(shù)學(xué)序號(hào)后邊的橫線上寫(xiě)出相應(yīng)的結(jié)論:
    kx+b=0
    kx+b=0

    y=kx+b
    y=k1x+b1
    y=kx+b
    y=k1x+b1

    kx+b>0
    kx+b>0

    kx+b<0
    kx+b<0

    (2)如圖,如果點(diǎn)C的坐標(biāo)為(1,3),那么不等式kx+b≥k1x+b1的解集是
    x≤1
    x≤1

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    已知一個(gè)一次函數(shù)的自變量的取值范圍是2≤x≤6,函數(shù)值的取值范圍是5≤y≤9,求這個(gè)一次函數(shù)解析式.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

    已知一個(gè)一次函數(shù)的自變量的取值范圍是2≤x≤6,函數(shù)值的取值范圍是5≤y≤9,求這個(gè)一次函數(shù)解析式.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案
    <ruby id="is4k8"></ruby>