【題目】如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).
(1)直接寫出點E的坐標;
(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:
①當t等于多少秒時,點P的橫坐標與縱坐標互為相反數(shù);
②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);
③當3秒<t<5秒時,設∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.
【答案】(1)點E的坐標是(﹣2,0);(2)①當t=2秒時,點P的橫坐標與縱坐標互為相反數(shù);②當點P在線段BC上時,點P的坐標(﹣t,2),當點P在線段CD上時,點P的坐標(﹣3,5﹣t);③能確定,z=x+y.
【解析】
(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;
(2)①由點C的坐標為(﹣3,2).得到BC=3,CD=2,由于點P的橫坐標與縱坐標互為相反數(shù);于是確定點P在線段BC上,有PB=CD,即可得到結(jié)果;
②分兩種情況討論:當點P在線段BC上時;當點P在線段CD上時;
③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
(1)根據(jù)題意,可知:三角形OAB沿x軸負方向平移3個單位得到三角形DEC.
∵點A的坐標是(1,0),∴點E的坐標是(﹣2,0).
(2)①∵點C的坐標為(﹣3,2),∴BC=3,CD=2.
∵點P的橫坐標與縱坐標互為相反數(shù),∴點P在線段BC上,∴PB=CD,即t=2,∴當t=2秒時,點P的橫坐標與縱坐標互為相反數(shù).
②當點P在線段BC上時,點P的坐標(﹣t,2);
當點P在線段CD上時,點P的坐標(﹣3,5﹣t);
③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由,將過程補充完整:
如圖,已知AD⊥BC于點D,EF⊥BC于點F,AD平分∠BAC.求證:∠E=∠1.
證明:∵AD⊥BC,EF⊥BC(已知),
∴∠ADC=∠EFC=90°(垂直的定義).
∴____________(_____________).
∴∠1=_____(_____________),
∠E=_____(_______________).
又∵AD平分∠BAC(已知),
∴_____=________.
∴∠1=∠E(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后解答問題:
分解因式:x3+3x2-4.
解答:把x=1代入多項式x3+3x2-4,發(fā)現(xiàn)此多項式的值為0,由此確定多項式x3+3x2-4中有因式(x-1),于是可設x3+3x2-4=(x-1)(x2+mx+n),分別求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多項式x3+3x2-4.這種分解因式的方法叫“試根法”.
(1)求上述式子中m,n的值;
(2)請你用“試根法”分解因式:x3+x2-16x-16.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了盡快實施“脫貧致富奔小康”宏偉意圖,某縣扶貧工作隊為朝陽溝村購買了一批蘋果樹苗和梨樹苗,已知一棵蘋果樹苗比一棵梨樹苗貴2元,購買蘋果樹苗的費用和購買梨樹苗的費用分別是3500元和2500元.
(1)若兩種樹苗購買的棵數(shù)一樣多,求梨樹苗的單價;
(2)若兩種樹苗共購買1100棵,且購買兩種樹苗的總費用不超過6000元,根據(jù)(1)中兩種樹苗的單價,求梨樹苗至少購買多少棵.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,若按圖中規(guī)律繼續(xù)下去,則∠1+∠2+…+∠n等于( )
A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,三角形ABC的頂點A、B、C的坐標分別為(0,3)、(﹣2,1)、(﹣1,1),如果將三角形ABC先向右平移2個單位長度,再向下平移2個單位長度,會得到三角形A′B′C′,點A'、B′、C′分別為點A、B、C移動后的對應點.
(1)請直接寫出點A′、B'、C′的坐標;
(2)請在圖中畫出三角形A′B′C′,并直接寫出三角形A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀剪下全等的四塊小長方形,然后按圖2拼成一個正方形.
(1)直接寫出圖2中的陰影部分面積;
(2)觀察圖2,請直接寫出下列三個代數(shù)式(m+n)2,(m﹣n)2,mn之間的等量關系;
(3)根據(jù)(2)中的等量關系,解決如下問題:若p+q=9,pq=7,求(p﹣q)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售A、B兩種不同型號的電風扇,每種型號電風扇的購買單價分別為每臺310元,460元.
(1)若某單位購買A,B兩種型號的電風扇共50臺,且恰好支出20000元,求A,B兩種型號電風扇各購買多少臺?
(2)若購買A,B兩種型號的電風扇共50臺,且支出不超過18000元,求A種型號電風扇至少要購買多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:
計算代數(shù)式(其中x≠0)的值后填入下表.并根據(jù)表格所反映出的(其中x≠0)的值與x之間的變化規(guī)律進行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | …… |
下面是小東計算代數(shù)式(其中x≠0)的值后填入表格,并根據(jù)表格進行探究的過程,請補充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 | …… |
(1)上表是(其中x≠0)與x的幾組對應值.直接寫出x=10時,求代數(shù)式的值;
(2)隨著x值的增大,代數(shù)式的值有何變化(回答“增大”或“減少”);
(3)當x值無限增大時,代數(shù)式的值無限趨近于一個數(shù),這個數(shù)是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com