【題目】在一只不透明的袋子中裝有2個白球和2個黑球,這些球除顏色外都相同.
(1)若先從袋子中拿走m個白球,這時從袋子中隨機摸出一個球是黑球的事件為“必然事件”,則m的值為
(2)若將袋子中的球攪勻后隨機摸出1個球(不放回),再從袋中余下的3個球中隨機摸出1個球,求兩次摸到的球顏色相同的概率.

【答案】
(1)2
(2)解:設紅球分別為H1、H2,黑球分別為B1、B2,列表得:

第二球

第一球

H1

H2

B1

B2

H1

(H1,H2

(H1,B1

(H1,B2

H2

(H2,H1

(H2,B1

(H2,B2

B1

(B1,H1

(B1,H2

(B1,B2

B2

(B2,H1

(B2,H2

(B2,B1

總共有12種結(jié)果,每種結(jié)果的可能性相同,兩次都摸到球顏色相同結(jié)果有4種,

所以兩次摸到的球顏色相同的概率= =


【解析】解:(1)∵在一只不透明的袋子中裝有2個白球和2個黑球,這些球除顏色外都相同,從袋子中拿走m個白球,這時從袋子中隨機摸出一個球是黑球的事件為“必然事件”, ∴透明的袋子中裝的都是黑球,
∴m=2,
故答案為:2;
(1)由必然事件的定義可知:透明的袋子中裝的都是黑球,從袋子中隨機摸出一個球是黑球的事件為“必然事件”才能成立,所以m的值即可求出;(2)列表得出所有等可能的情況數(shù),找出兩次摸到的球顏色相同的情況數(shù),即可求出所求的概率.此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D都在⊙O上, 的度數(shù)等于84°,CA是∠OCD的平分線,則∠ABD+∠CAO=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船位于燈塔P的北偏東30°方向,距離燈塔18海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東55°方向上的B處,此時漁船與燈塔P的距離約為海里(結(jié)果取整數(shù))(參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關于點A對稱

(1)填空:點B的坐標是;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動點(A、B兩點除外),將△CAD繞點C按逆時針方向旋轉(zhuǎn)角α得到△CEF,其中點E是點A的對應點,點F是點D的對應點.

(1)如圖1,當α=90°時,G是邊AB上一點,且BG=AD,連接GF.求證:GF∥AC;
(2)如圖2,當90°≤α≤180°時,AE與DF相交于點M.
①當點M與點C、D不重合時,連接CM,求∠CMD的度數(shù);
②設D為邊AB的中點,當α從90°變化到180°時,求點M運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)
(2)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線AB經(jīng)過點A(﹣4,0)、B(0,4),⊙O的半徑為1(O為坐標原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為

查看答案和解析>>

同步練習冊答案