【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關于點A對稱

(1)填空:點B的坐標是;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

【答案】
(1)(0,
(2)

解:∵B點坐標為(0, ),

∴直線解析式為y=kx+ ,令y=0可得kx+ =0,解得x=﹣ ,

∴OC=﹣ ,

∵PB=PC,

∴點P只能在x軸上方,

如圖1,過B作BD⊥l于點D,設PB=PC=m,

則BD=OC=﹣ ,CD=OB= ,

∴PD=PC﹣CD=m﹣

在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,

即m2=(m﹣ 2+(﹣ 2,解得m= + ,

∴PB + ,

∴P點坐標為(﹣ , + ),

當x=﹣ 時,代入拋物線解析式可得y= + ,

∴點P在拋物線上;


(3)

解:如圖2,連接CC′,

∵l∥y軸,

∴∠OBC=∠PCB,

又PB=PC,

∴∠PCB=∠PBC,

∴∠PBC=∠OBC,

又C、C′關于BP對稱,且C′在拋物線的對稱軸上,即在y軸上,

∴∠PBC=∠PBC′,

∴∠OBC=∠CBP=∠C′BP=60°,

在Rt△OBC中,OB= ,則BC=1

∴OC= ,即P點的橫坐標為 ,代入拋物線解析式可得y=( 2+ =1,

∴P點坐標為( ,1)


【解析】解:(1)∵拋物線y=x2+ 與y軸相交于點A,
∴A(0, ),
∵點B與點O關于點A對稱,
∴BA=OA= ,
∴OB= ,即B點坐標為(0, ),
所以答案是:(0, );
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質是解答本題的根本,需要知道二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角∠O的內部有一滑動桿AB,當端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經(jīng)過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為2 時,則陰影部分的面積為( )

A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( +1)( ﹣1)+(﹣2)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一只不透明的袋子中裝有2個白球和2個黑球,這些球除顏色外都相同.
(1)若先從袋子中拿走m個白球,這時從袋子中隨機摸出一個球是黑球的事件為“必然事件”,則m的值為;
(2)若將袋子中的球攪勻后隨機摸出1個球(不放回),再從袋中余下的3個球中隨機摸出1個球,求兩次摸到的球顏色相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,田亮同學用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學知識是( 。
A.垂線段最短
B.經(jīng)過一點有無數(shù)條直線
C.經(jīng)過兩點,有且僅有一條直線
D.兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產甲、乙兩種新型飲料共650千克,設該廠生產甲種飲料x(千克).
(1)列出滿足題意的關于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

同步練習冊答案