【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點A(1,8)、B(﹣4,m).

(1)求k1、k2、b的值;
(2)求△AOB的面積;
(3)若M(x1 , y1)、N(x2 , y2)是反比例函數(shù)y=圖象上的兩點,且x1<x2 , y1<y2 , 指出點M、N各位于哪個象限,并簡要說明理由.

【答案】
(1)

解:∵反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點A(1,8)、B(﹣4,m),

∴k1=8,B(﹣4,﹣2),

,解得


(2)

解:由(1)知一次函數(shù)y=k2x+b的圖象與y軸的交點坐標(biāo)為C(0,6),

∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;


(3)

解∵比例函數(shù)y=的圖象位于一、三象限,

∴在每個象限內(nèi),y隨x的增大而減小,

∵x1<x2,y1<y2,

∴M,N在不同的象限,

∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.


【解析】(1)先把A點坐標(biāo)代入y=可求得k1=8,則可得到反比例函數(shù)解析式,再把B(﹣4,m)代入反比例函數(shù)求得m,得到B點坐標(biāo),然后利用待定系數(shù)法確定一次函數(shù)解析式即可求得結(jié)果;
(2)由1知一次函數(shù)y=k2x+b的圖象與y軸的交點坐標(biāo)為(0,6),可求SAOB=×6×2+×6×1=15;
(3)根據(jù)反比例函數(shù)的性質(zhì)即可得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

(1)直接寫出y,y與x之間的函數(shù)關(guān)系式(不寫過程);

(2)①求出點M的坐標(biāo),并解釋該點坐標(biāo)所表示的實際意義;

根據(jù)圖象判斷,x取何值時,y>y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(m+1)x2|m|n+4.

(1)當(dāng)mn為何值時,此函數(shù)是一次函數(shù)?

(2)當(dāng)mn為何值時,此函數(shù)是正比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)

(1)求點B
距水平面AE的高度BH;
(2)求廣告牌CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:

解:設(shè)a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學(xué)因式分解的結(jié)果是否徹底:________(徹底不徹底”);

(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;

(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由甲A地到B地的路線圖(箭頭表示行進的方向).其中EAB的中點,AHHB,判斷三人行進路線長度的大小關(guān)系為

A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲==

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC,ABC≌△A1BC1,A1BAC于點E,A1C1分別交AC、BCD、F兩點,觀察并猜想線EA1FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠A=∠B=∠C,點E在邊AB上,∠AED=60°,則一定有(  )
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的兩個頂點A , D分別在x軸和y軸上,CEy軸于點E , OA=2,∠ODA=30°.若反比例函數(shù)y 的圖象過CE的中點F , 則k的值為

查看答案和解析>>

同步練習(xí)冊答案