【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)補全條形統(tǒng)計圖,補全扇形統(tǒng)計圖中樂器所占的百分比;
(2)本次調(diào)查學生選修課程的“眾數(shù)”是__________;
(3)若該校有1200名學生,請估計選修繪畫的學生大約有多少名?
【答案】(1)詳見解析;(2)舞蹈;(3)240
【解析】
(1)由舞蹈人數(shù)及其所占百分比求得總人數(shù),總人數(shù)乘以書法對應百分比可求得其人數(shù),依據(jù)各科目人數(shù)之和等于總人數(shù)求得繪畫人數(shù),再用樂器人數(shù)除以總人數(shù)可得其對應百分比.
(2)根據(jù)眾數(shù)的定義求解即可.
(3)用總人數(shù)乘以樣本中繪畫對應的比例即可求解.
解:(1)被調(diào)查的總人數(shù)為:20÷40%=50(人),
∴書法的人數(shù)為:50×10%=5人,繪畫的人數(shù)為:50-15-20-5=10(人),
則樂器所在的百分比為:15÷50×100%=30%,
補全統(tǒng)計圖如圖所示:
(2)本次調(diào)查學生選修課程的“眾數(shù)”是舞蹈;
故答案為:舞蹈.
(3)選修繪畫的人數(shù)占總人數(shù)的百分比為:,
所以估計選修繪畫的學生大約有:(人);
故答案為:240人.
科目:初中數(shù)學 來源: 題型:
【題目】某運輸公司現(xiàn)將一批152噸的貨物運往A,B兩地,若用大小貨車15輛,則恰好能一次性運完這批貨.已知這兩種大小貨車的載貨能力分別為12噸/輛和8噸/輛,其運往A,B兩地的運費如下表所示:
目的地(車型) | A地(元/輛) | B地(元/輛) |
大貨車 | 800 | 900 |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛.(用二元一次方程組解答)
(2)現(xiàn)安排其中的10輛貨車前往A地,其余貨車前往B地,設前往A地的大貨車為x輛,前往A,B兩地總費用為w元,試求w與x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類似地可以用折紙的方法求方程的一個正根。下面是甲、乙兩位同學的做法:甲:如圖1,裁一張邊長為1的正方形的紙片,先折出的中點,再折出線段,然后通過折疊使落在線段上,折出點的新位置,因而,類似地,在上折出點使。此時,的長度可以用來表示方程的一個正根;乙:如圖2,裁一張邊長為1的正方形的紙片,先折出的中點,再折出線段N,然后通過沿線段折疊使落在線段上,折出點的新位置,因而。此時,的長度可以用來表示方程的一個正根;甲、乙兩人的做法和結果( )。
A.甲對,乙錯B.乙對,甲錯C.甲乙都對D.甲乙都錯
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把函數(shù)的圖象繞點旋轉,得到新函數(shù)的圖象,我們稱是關于點的相關函數(shù).的圖象的對稱軸與軸交點坐標為.
(1)填空:的值為 (用含的代數(shù)式表示)
(2)若,當時,函數(shù)的最大值為,最小值為,且,求的解析式;
(3)當時,的圖象與軸相交于兩點(點在點的右側).與軸相交于點.把線段原點逆時針旋轉,得到它的對應線段,若線與的圖象有公共點,結合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點A(-1,0)、B(4,0),與y軸交于點C(0,4).
(1)求拋物線的表達式;
(2)點P為直線BC上方拋物線的一點,分別連接PB、PC,若直線BC恰好平分四邊形COBP的面積,求P點坐標;
(3)在(2)的條件下,是否在該拋物線上存在一點Q,該拋物線對稱軸上存在一點N,使得以A、P、Q、N為頂點的四邊形為平行四邊形?若存在,求出Q點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與軸,軸分別交于點,拋物線的頂點是,且與軸交于兩點,與軸交于點是拋物線上一個動點,過點作于點.
求二次函數(shù)的解析式;
當點運動到何處時,線段PG的長取最小值?最小值為多少?
若點是拋物線對稱軸上任意點,點是拋物線上一動點,是否存在點使得以點為頂點的四邊形是菱形?若存在,請你直接寫出點的坐標;若不存在,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,點C是AB中點,CD⊥AB,P是CD上任意一點,由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標系中,直線y=-x+1分別交x軸、y軸于點A和點B,點C是AB中點,CD⊥AB交OA于點D,連結BD,求BD的長
(應用)如圖③
(1)將線段AB繞點A順時針旋轉90°得到線段AB′,請在圖③網(wǎng)格中畫出線段AB;
(2)若存在一點P,使得PA=PB′,且∠APB′≠90°,當點P的橫、縱坐標均為整數(shù)時,則AP長度的最小值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com