【題目】如圖,AB是半圓的直徑,點(diǎn)D是弧AC的中點(diǎn),∠B=50°,則下列判斷不正確的是(
A.∠ACB=90°
B.AC=2CD
C.∠DAB=65°
D.∠DAB+∠DCB=180°

【答案】B
【解析】解:A、∵AB是半圓的直徑, ∴∠ACB=90°,故本選項(xiàng)正確;
B、∵點(diǎn)D是 的中點(diǎn),
∴AD=CD,
∵AD+CD>AC,
∴AC<2CD,故本選項(xiàng)錯(cuò)誤;
C、∵∠B=50°,
∴∠D=180°﹣∠B=130°,
∴∠DCA=∠DAC=25°,
∵∠ACB=90°,
∴∠BAC=40°,
∴∠BAD=∠BAC+∠DAC=65°,故本選項(xiàng)正確;
D、∠DAB+∠DCB=180°.正確.
故選B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓心角、弧、弦的關(guān)系的相關(guān)知識(shí),掌握在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)EG

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)OEG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤(rùn)1200元,B產(chǎn)品每件可獲利潤(rùn)700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù) y1kx+b y2x+a 的圖象如圖所示,則下列結(jié)論:①k<0;a<0,b<0;③當(dāng) x=3 時(shí),y1y2④不等式 kx+bx+a 的解集是 x<3,其中正確的結(jié)論有_______(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=x+n-2與直線l2:y=mx+n相交于點(diǎn)P(1,2).

(1)m,n的值;

(2)請(qǐng)結(jié)合圖象直接寫出不等式mx+n>x+n-2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )

A. 1個(gè); B. 2個(gè); C. 3個(gè); D. 4個(gè);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD、BF相交于點(diǎn)O,∠D=,下面判定兩直線平行正確的是( )

A. 當(dāng)∠C=時(shí),AB∥CD B. 當(dāng)∠A=時(shí),AC∥DE

C. 當(dāng)∠E=時(shí),CD∥EF D. 當(dāng)∠BOC=時(shí),BF∥DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小紅在某個(gè)路口統(tǒng)計(jì)20分鐘各種車輛通過情況制成的統(tǒng)計(jì)表,其中空格處的字跡已模糊,但小紅還記得750800時(shí)段內(nèi)的電瓶車車輛數(shù)與800810時(shí)段內(nèi)的貨車車輛數(shù)之比是72

電瓶車

公交車

貨車

小轎車

合計(jì)

750800

5

63

133

800810

5

45

82

合計(jì)

67

30

108

(1)若在750800時(shí)段,經(jīng)過的小轎車數(shù)量正好是電瓶車數(shù)量的,求這個(gè)時(shí)段內(nèi)的電瓶車通過的車輛數(shù);

(2)根據(jù)上述表格數(shù)據(jù),求在750800800810兩個(gè)時(shí)段內(nèi)電瓶車和貨車的車輛數(shù);

(3)據(jù)估計(jì),在所調(diào)查的750800時(shí)段內(nèi),每增加1輛公交車,可減少8輛小轎車行駛,為了使該時(shí)段內(nèi)小轎車流量減少到比公交車多13輛,則在該路口應(yīng)再增加幾輛公交車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和△BPC,則四邊形PCDE面積的最大值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案