【題目】如圖,EBC延長(zhǎng)線上一點(diǎn),∠ABC與∠ACE的平分線相交于點(diǎn)D,∠D15°,則∠A__

【答案】30°

【解析】

先根據(jù)角平分線的定義得到∠ABD=∠CBD,∠ACD=∠ECD,再根據(jù)三角形外角性質(zhì)得∠ACE=∠A+ABC,代入得:∠A2(∠ECD﹣∠CBD),可得結(jié)論.

∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)D,

∴∠ABD=∠CBD,∠ACD=∠ECD,

∵∠ACE=∠A+ABC,

即∠ACD+ECD=∠ABC+CBD+A,

2ECD2CBD+A,

∴∠A2(∠ECD﹣∠CBD

∵∠ECD=∠CBD+D,∠D15°

∴∠D=∠ECD﹣∠CBD15°

∴∠A2×15°30°

故答案為:30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60°,點(diǎn)C為弧BD的中點(diǎn),則AC的長(zhǎng)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,對(duì)角線相交于,,、分別是、的中點(diǎn),下列結(jié)論:①;②四動(dòng)形是平行四邊形;③;④平分.其中正確的是(

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門(mén)對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn),分別是邊,上的點(diǎn),且,,相交于點(diǎn),若點(diǎn)的重心.則以下結(jié)論:①線段,,的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個(gè);④的面積是面積的.其中一定正確的結(jié)論有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店用1000元人民幣購(gòu)進(jìn)水果銷售,過(guò)了一段時(shí)間又用2800元購(gòu)進(jìn)這種水果,所購(gòu)數(shù)量是第一次購(gòu)進(jìn)數(shù)量的2倍,但每千克的價(jià)格比第一次購(gòu)進(jìn)的貴了2元.

1)求該商店第一次購(gòu)進(jìn)水果多少千克?

2)該商店兩次購(gòu)進(jìn)的水果按照相同的標(biāo)價(jià)銷售一段時(shí)間后,將最后剩下的50千克按照標(biāo)價(jià)半價(jià)出售.售完全部水果后,利潤(rùn)不低于3100元,則最初每千克水果的標(biāo)價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MNABDAB邊上一點(diǎn),過(guò)點(diǎn)DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

求y關(guān)于x的函數(shù)關(guān)系式;

該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案