【題目】在中,,,,根據(jù)下列條件不能判斷是直角三角形的是( )
A.,B.
C.,,D.
【答案】B
【解析】
如果已知角之間的關(guān)系,只要求得有一個角是90°即可判斷它所在的三角形是直角三角形,據(jù)此可判斷A、B;如果已知邊之間的關(guān)系,可借助勾股定理的逆定理判斷三角形是否為直角三角形據(jù)此可判斷C、D.
解:A、∵∠B=50°,∠C=40°,
∴∠A=180°-50°-40°=90°,
∴△ABC是直角三角形;
B. ∵,
∴設(shè)∠A=x,則∠B=∠C=2x
則有x+2x+2x=180°,
解得x=36°,2x=72°,
∴∠A=36°,∠B=∠C=72°,△ABC不是直角三角形;
C. ∵,,,
∴,,,
∴,
∴△ABC是直角三角形;
D. ∵,
∴設(shè),
∴,△ABC是直角三角形;
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)反比例函數(shù)由構(gòu)造一個新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)” ).給出下列幾個命題:
①該函數(shù)的圖象是中心對稱圖形;
②當(dāng)時,該函數(shù)在時取得最大值-2;
③的值不可能為1;
④在每個象限內(nèi),函數(shù)值隨自變量的增大而增大.
其中正確的命題是 .(請寫出所有正確的命題的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.
(1)若從中隨機(jī)取出1張紙幣,求取出紙幣的金額是20元的概率;
(2)若從中隨機(jī)取出2張紙幣,求取出紙幣的總額可購買一件51元的商品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn):若每箱以50元的價格出售,平均每天銷售80箱,價格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑶.當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(﹣1,5),點B的坐標(biāo)為(﹣3,1).
(1)在平面直角坐標(biāo)系中作線段AB關(guān)于y軸對稱的線段A1B1(A與A1,B與B1對應(yīng));
(2)求△AA1B1的面積;
(3)在y軸上存在一點P,使PA+PB的值最小,則點P的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:①aa2=_____;
②=_____;
③a0=_____(a≠0);
④=_____;
⑤﹣6a÷3a=_____;
⑥=_____;
⑦=_____;
⑧=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,BC=8,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com