【題目】如圖,在中,,,于點(diǎn),是的中點(diǎn),連結(jié)交于點(diǎn).
(1)與全等嗎?請(qǐng)說(shuō)明理由.
(2)若,求的長(zhǎng).
【答案】(1)全等,理由見(jiàn)解析;(2)
【解析】
(1)根據(jù)垂線的定義可證∠BDC=∠ADC=90°,證明∠DCB=∠DBC =45°,根據(jù)等角對(duì)等邊證明BD=DC,根據(jù)等腰三角形三線合一證明BE⊥AC,然后根據(jù)同角的余角相等可證∠ACD=∠ABE,利用AAS可證與全等;
(2)由全等三角形的性質(zhì)可得AD=DF=1,設(shè)BD=DC=x,則BC=AB= x +1,在Rt△BDC中根據(jù)勾股定理求得x的值即可.
解:(1)△ACD與△FBD全等.理由如下:
∵CD⊥AB于點(diǎn)D,
∴∠BDC=∠ADC=90°,
∴∠A+∠ACD=90°,
△BDC中,∵∠BDC=90°,∠DBC=45°,
∴∠DCB=∠DBC =45°,
∴BD=CD.
∵,是的中點(diǎn)
∴BE⊥AC
∴∠A+∠ABE=90°,
∴∠ACD=∠ABE,
在△ACD與△FBD中,
∵
∴△ACD≌△FBD(ASA);
(2)∵△ACD≌△FBD,,
∴AD=DF=1,
設(shè)BD=DC= x,則BC=AB= x +1,
在Rt△BDC中根據(jù)勾股定理
即
解得(負(fù)值已經(jīng)舍去),
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時(shí)間,然后分別按原速一同駛往甲地后停車.設(shè)慢車行駛的時(shí)間為x小時(shí),兩車之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象,請(qǐng)根據(jù)圖象解決下列問(wèn)題:
(1)甲乙兩地之間的距離為 千米;
(2)求快車和慢車的速度;
(3)求線段DE所表示的y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行以“助人為樂(lè),樂(lè)在其中”為主題的演講比賽,比賽設(shè)一個(gè)第一名,一個(gè)第二名,兩個(gè)并列第三名.前四名中七、八年級(jí)各有一名同學(xué),九年級(jí)有兩名同學(xué),小蒙同學(xué)認(rèn)為前兩名是九年級(jí)同學(xué)的概率是,你贊成他的觀點(diǎn)嗎?請(qǐng)用列表法或畫(huà)樹(shù)形圖法分析說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
⑴求證:AC=CD.
⑵若OB=2,求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線軸于點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),…直線軸于點(diǎn).函數(shù)的圖像與直線分別變于點(diǎn);函數(shù)的圖像與直線分別交于點(diǎn),如果的面積記的作,四邊形的面積記作,四邊形的面積記作,…四邊形的面積記作,那么________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A. 30.6 B. 32.1 C. 37.9 D. 39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)學(xué)老師布置了這樣一道作業(yè)題:
在△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè).BD=BC,∠BAC=α,∠DBC=β,α+β=120°,連接AD,求∠ADB的度數(shù).
小聰提供了研究:先從特殊問(wèn)題開(kāi)始研究:當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱知識(shí),以AB為對(duì)稱軸構(gòu)造△ABD的軸對(duì)稱圖形△ABD′,連接CD′,然后利用α=90°,β=30°以及等邊三角形的相關(guān)知識(shí)可解決這個(gè)問(wèn)題.
(1)請(qǐng)結(jié)合小聰研究,畫(huà)出當(dāng)α=90°,β=30°時(shí)相應(yīng)的圖形;
(2)請(qǐng)結(jié)合小聰研究,求出當(dāng)α=90°,β=30°時(shí)∠ADB的圖形;
(3)請(qǐng)結(jié)合小聰研究,請(qǐng)解決數(shù)學(xué)老師布置的這道作業(yè)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.
(1)求的值與的長(zhǎng);
(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com