【題目】如圖,在單位為1的網(wǎng)格中,有△ABC,且的三個(gè)頂點(diǎn)都在格點(diǎn)上:
(1)以點(diǎn)C為原點(diǎn)建立直角坐標(biāo)系,并確定A點(diǎn)的坐標(biāo);
(2)將△ABC向下平移5個(gè)單位,得到△A1B1C1(不寫作法);
(3)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2(不寫作法);
(4)求弧BB2的長.
【答案】(1)圖見解析,A點(diǎn)的坐標(biāo)為(3,4);(2)圖見解析;(3)圖見解析;(4).
【解析】
(1)根據(jù)題意作出直角坐標(biāo)系,然后寫出A點(diǎn)的坐標(biāo);
(2)作出點(diǎn)A、B、C向下平移5個(gè)單位長度的對應(yīng)點(diǎn),首尾順次連接即可得;
(3)作出點(diǎn)A、B繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°所得對應(yīng)點(diǎn),首尾順次連接即可得;
(4)根據(jù)弧長公式列式計(jì)算可得.
解:(1)如圖:A點(diǎn)的坐標(biāo)為(3,4);
(2)△A1B1C1為所求,
(3)△A2B2C2為所求,
(4)由圖可知BC=,∠BCB1=90°.
∴弧BB2的長==,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考前,某校文具店以每套5元購進(jìn)若干套考試用具,為讓利考生,該店決定售價(jià)不超過7元,在幾天的銷售中發(fā)現(xiàn)每天的銷售數(shù)量y(套)和售價(jià)x(元)之間存在一次函數(shù)關(guān)系,繪制圖象如圖.
(1)y與x的函數(shù)關(guān)系式為 (并寫出x的取值范圍);
(2)若該文具店每天要獲得利潤80元,則該套文具的售價(jià)為多少元?
(3)設(shè)銷售該套文具每天獲利w元,則銷售單價(jià)應(yīng)為多少元時(shí),才能使文具店每天的獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)在一個(gè)不透明的紙箱里裝有紅、黃、藍(lán)三種顏色的小球,它們除顏色外完全相同,其中紅球有2個(gè),黃球有1個(gè),藍(lán)球有1個(gè).現(xiàn)有一張電影票,小明和小亮決定通過摸球游戲定輸贏(贏的一方得電影票).游戲規(guī)則是:兩人各摸1次球,先由小明從紙箱里隨機(jī)摸出1個(gè)球,記錄顏色后放回,將小球搖勻,再由小亮隨機(jī)摸出1個(gè)球并記錄顏色.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個(gè)游戲規(guī)則對雙方公平嗎?請你利用樹狀圖或列表法說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個(gè)根,則這四個(gè)根的和為﹣4.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1所示,直線y=x+c與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式
(2)點(diǎn)E在拋物線的對稱軸上,求CE+OE的最小值;
(3)如圖2所示,M是線段OA的上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AC和拋物線分別交于點(diǎn)P、N.
①若以C,P,N為頂點(diǎn)的三角形與△APM相似,則△CPN的面積為 ;
②若點(diǎn)P恰好是線段MN的中點(diǎn),點(diǎn)F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以點(diǎn)D,F(xiàn),P,M為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于點(diǎn)A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮兩同學(xué)做游戲,游戲規(guī)則是:有一個(gè)不透明的盒子,里面裝有兩張紅卡片,兩張綠卡片,卡片除顏色外其它均相同,兩人先后從盒子中取出一張卡片(不放回),若兩人所取卡片的顏色相同,則小明獲勝,否則小亮獲勝.
(1)請用畫樹狀圖或列表法列出游戲所有可能的結(jié)果;
(2)請根據(jù)你的計(jì)算結(jié)果說明游戲是否公平,若不公平,你認(rèn)為對誰有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AD是△ABC的高,且BD=CD.
(1)如圖1,求證:∠BAD=∠CAD;
(2)如圖2,點(diǎn)E在AD上,連接BE,將△ABE沿BE折疊得到△A′BE,A′B與AC相交于點(diǎn)F,若BE=BC,求∠BFC的大;
(3)如圖3,在(2)的條件下,連接EF,過點(diǎn)C作CG⊥EF,交EF的延長線于點(diǎn)G,若BF=10,EG=6,求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用8個(gè)大小相同的小正方體搭成的幾何體,僅在該幾何體中取走一塊小正方體,使得到的新幾何體同時(shí)滿足兩個(gè)要求:(1)從正面看到的形狀和原幾何體從正面看到的形狀相同;(2)從左面看到的形狀和原幾何體從左面看到的形狀也相同.在不改變其它小正方體位置的前提下,可取走的小正方體的標(biāo)號(hào)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com