【題目】如圖,中,以為直徑作⊙,交于點,為弧上一點,連接、、,交于點.
(1)若,求證:為⊙的切線;
(2)若,求證:平分;
(3)在(2)的條件下,若,求⊙的半徑.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)根據(jù)AB為⊙直徑,得出=90°,即°,,,推出,即°,
所以==90°,得出AC為⊙的切線;(2)證明, 得到,因為,所以,即可得到AE平分;(3)過點F作FH⊥AB于H可證,可得AH=AD=4,FH=DF=2;可證故;BH=x,則BD=2x,BF=2x-2,利用勾股定理可得,;解得BH=,AB=BH+AH=,由AO=AB=,即可得⊙的半徑.
(1)證明:∵AB為⊙直徑,
∴=90°,
∴°,
∵,,
∴,
∴°,
即°,
∴AC為⊙的切線;
(2)證明:∵,
∴;
∵,
∴;
∴,
∵,
∴;
即AE平分.
(3)解:過點F作FH⊥AB于H.
∴°;
又∵,AF=AF,
∴;
∴AH=AD=4,FH=DF=2;
∵°,,
∴,
∴;
設BH=x,則BD=2x,BF=2x-2,
∴,
∴;
∴x=0(舍)或x=;
∴BH=,AB=BH+AH=;
∴AO=AB=;
∴⊙的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】在∠ABC中,∠ABC=90°,tan∠BAC=.
(1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為M、N,若點B恰好是線段MN的中點,求tan∠BAM的值;
(2)如圖2,P是邊BC延長線上一點,∠APB=∠BAC,求tan∠PAC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,tanA=,點D,E分別在邊AB、AC上,DE⊥AC,DE=3,DB=10.求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,E、F分別是邊AB、BC上的動點,且EF=6,M為EF中點,P是邊AD上的一個動點,則CP+PM的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為4,2,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點,與軸交于點.
(1)求拋物線的解析式;
(2)若點在第一象限的拋物線上,且點的橫坐標為,設的面積為,求與的函數(shù)關系式,并求的最大值;
(3)在軸上是否存在點,使以點,,為頂點的三角形為等腰三角形?如果存在,直接寫出點坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com