【題目】如圖,中,以為直徑作⊙,交于點,為弧上一點,連接、、,交于點.

(1),求證:為⊙的切線;

(2),求證:平分;

(3)(2)的條件下,若,求⊙的半徑.

【答案】1)詳見解析;(2)詳見解析;(3.

【解析】

1)根據(jù)AB為⊙直徑,得出=90°,即°,,推出,即°,

所以==90°,得出AC為⊙的切線;(2)證明, 得到,因為,所以,即可得到AE平分;(3)過點FFHABH可證,可得AH=AD=4,FH=DF=2;可證BH=x,則BD=2x,BF=2x-2,利用勾股定理可得,;解得BH=,AB=BH+AH=,由AO=AB=,即可得⊙的半徑.

1)證明:∵AB為⊙直徑,

=90°,

°,

,

,

°,

°,

AC為⊙的切線;

(2)證明:∵

;

;

,

AE平分.

3)解:過點FFHABH.

°;

又∵AF=AF,

;

AH=AD=4,FH=DF=2;

°,,

,

BH=x,則BD=2x,BF=2x-2

,

;

x=0()x=

BH=,AB=BH+AH=

AO=AB=;

∴⊙的半徑為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在∠ABC中,∠ABC90°tanBAC

1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為M、N,若點B恰好是線段MN的中點,求tanBAM的值;

2)如圖2P是邊BC延長線上一點,∠APB=∠BAC,求tanPAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結論:①b24ac;②2a+b0;③ab+c0;④5ab.其中正確的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,tanA,點D,E分別在邊AB、AC上,DEAC,DE3,DB10.求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形的內(nèi)接正六邊形,若正六邊形的面積等于,則的面積等于 __________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,E、F分別是邊AB、BC上的動點,且EF6,MEF中點,P是邊AD上的一個動點,則CP+PM的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點的縱坐標分別為4,2,反比例函數(shù)y(x0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過兩點,與軸交于點.

1)求拋物線的解析式;

2)若點在第一象限的拋物線上,且點的橫坐標為,設的面積為,求的函數(shù)關系式,并求的最大值;

3)在軸上是否存在點,使以點,為頂點的三角形為等腰三角形?如果存在,直接寫出點坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案