【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)在第一象限的拋物線上,且點(diǎn)的橫坐標(biāo)為,設(shè)的面積為,求與的函數(shù)關(guān)系式,并求的最大值;
(3)在軸上是否存在點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫出點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2),當(dāng)時(shí),的最大值為8;(3)存在. 或或,
【解析】
(1)拋物線y=ax2+3x+c經(jīng)過(guò)A(-1,0),B(4,0),把A、B兩點(diǎn)坐標(biāo)代入上式,解得:a=-1,c=4,即可求解;
(2)如圖所示,過(guò)點(diǎn)作的垂線,把代入拋物線的解析式,先求出C點(diǎn)坐標(biāo),把B,C代入拋物線方程,求出直線的解析式,再根據(jù)P點(diǎn)的橫坐標(biāo)為,得到,,PQ,根據(jù)三角形面積公式即可求出S;
(3)存在.分EC=BE、BC=CE、BC=BE分別求解即可.
解:(1)∵拋物線經(jīng)過(guò),,
把、兩點(diǎn)坐標(biāo)代入上式,解得:,,
故:拋物線;
(2)∵將代入拋物線的解析式得:,
∴,
把將,代入拋物線方程,
解得:直線的解析式為:.
過(guò)點(diǎn)作的垂線,如圖所示:
∵點(diǎn)的橫坐標(biāo)為,
∴,.
∴.
∴.
∴當(dāng)時(shí),的最大值為8;
(3)存在. 如圖所示:
當(dāng)時(shí),在原點(diǎn),此時(shí)點(diǎn),
當(dāng)時(shí),在點(diǎn)關(guān)于軸對(duì)稱點(diǎn),此時(shí)點(diǎn),
當(dāng)時(shí),,此時(shí),,
即:或或,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,以為直徑作⊙,交于點(diǎn),為弧上一點(diǎn),連接、、,交于點(diǎn).
(1)若,求證:為⊙的切線;
(2)若,求證:平分;
(3)在(2)的條件下,若,求⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)(0,3),(﹣1,0),(3,0)三點(diǎn).
(1)求二次函數(shù)解析式;
(2)試說(shuō)明y隨x的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,是的延長(zhǎng)線上一點(diǎn),與交于點(diǎn),。
(1)求證:;
(2)若的面積為4,求平行四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)D在雙曲線的圖象上,而點(diǎn)P是直線上的動(dòng)點(diǎn),若這三點(diǎn)與平面上任意一點(diǎn)構(gòu)成正方形,則點(diǎn)D的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于、,與軸交于,點(diǎn)是拋物線的頂點(diǎn),過(guò)平行于軸的直線是它的對(duì)稱軸,點(diǎn)在對(duì)稱軸上運(yùn)動(dòng)。僅用無(wú)刻度的直尺畫線的方法,按要求完成下列作圖:
(1)在圖①中作出點(diǎn),使線段最;
(2)在圖②中作出點(diǎn),使線段最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=2x2﹣8x+m滿足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)6<x<7時(shí),它的圖象位于x軸的上方,則m的值為( 。
A. 8 B. ﹣10 C. ﹣42 D. ﹣24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為P(1,4),與y軸交于點(diǎn)C(0,3),與x軸交于點(diǎn)A,B.
(1)求此拋物線的解析式.
(2)設(shè)Q是直線BC上方該拋物線上除點(diǎn)P外的一點(diǎn),且△BCQ與△BCP的面積相等,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),以為邊長(zhǎng)在第一象限內(nèi)作正方形,若反比例函數(shù)()的圖象經(jīng)過(guò)頂點(diǎn).
(1)試確定的值;
(2)若正方形向左平移個(gè)單位后,頂點(diǎn)恰好落在反比例函數(shù)的圖象上,試確定的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com