【題目】已知拋物線G有最低點。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標y與橫坐標x之間存在一個函數(shù)關系,求這個函數(shù)關系式,并寫出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結(jié)合圖像,求點P的縱坐標的取值范圍.

【答案】1)二次函數(shù)的最小值是;(2;(3)-43.

【解析】

1)拋物線有最低點即開口向上,m0,用配方法或公式法求得對稱軸和函數(shù)最小值.

2)寫出拋物線G的頂點式,根據(jù)平移規(guī)律即得到拋物線G1的頂點式,進而得到拋物線G1頂點坐標(m+1-m-3),即x=m+1,y=-m-3,x+y=-2即消去m,得到yx的函數(shù)關系式.再由m0,即求得x的取值范圍.

3)求出拋物線恒過點B2-4),函數(shù)H圖象恒過點A2-3),由圖象可知兩圖象交點P應在點AB之間,即點P縱坐標在A、B縱坐標之間.

解:(1)∵y=mx2-2mx-3=mx-12-m-3,拋物線有最低點,

∴二次函數(shù)y=mx2-2mx-3的最小值為-m-3.

2)∵拋物線Gy=mx-12-m-3,

∴平移后的拋物線G1y=mx-1-m2-m-3,

∴拋物線G1頂點坐標為(m+1,-m-3,

x=m+1y=-m-3,

x+y=m+1-m-3=-2.

x+y=-2,變形得y=-x-2.

m0,m=x-1.

x-10,

x1,

yx的函數(shù)關系式為y=-x-2x1.

3)如圖,函數(shù)Hy=-x-2x1)圖象為射線,

x=1時,y=-1-2=-3;x=2時,y=-2-2=-4,

∴函數(shù)H的圖象恒過點B2,-4,

∵拋物線Gy=mx-12-m-3,

x=1時,y=-m-3;x=2時,y=m-m-3=-3.

∴拋物線G恒過點A2,-3,

由圖象可知,若拋物線與函數(shù)H的圖象有交點P,則yByPyA,

∴點P縱坐標的取值范圍為-4yP-3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點,交⊙O于點D,BE=CE,連接DE,OE.

(1)判斷DE與⊙O的位置關系,并說明理由;

(2)求證:BC2=CD2OE;

(3)若cos∠BAD=,BE=6,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片,,點邊上,將沿折疊,點落在點處,、分別交于點、,且,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,點D是邊BC上一點.作射線AD,點B關于射線AD的對稱點為點E.連接CE并延長,交射線AD于點F

1)如圖,連接AE,

AEAC的數(shù)量關系是  ;

設∠BAF=a,用a表示∠BCF的大。

2)如圖,用等式表示線段AF,CF,EF之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系,已知二次函數(shù)m0)的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,頂點為點D

1)點B的坐標為   ,點D的坐標為   ;(用含有m的代數(shù)式表示)

2)連接CD,BC

①若,求二次函數(shù)的表達式;

②若把ABC沿著直線BC翻折,點A恰好在直線CD上,求二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃投資萬元引進一條汽車配件流水生產(chǎn)線,經(jīng)過調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬元,每件出廠價萬元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費用累計(萬元)如下表:

···

維修、保養(yǎng)費用累計萬元

···

若上表中第年的維修、保養(yǎng)費用累計(萬元)的數(shù)量關系符合我們已經(jīng)學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個.

1)求出關于的函數(shù)解析式;

2)投產(chǎn)第幾年該公司可收回萬元的投資?

3)投產(chǎn)多少年后,該流水線要報廢(規(guī)定當年的盈利不大于維修、保養(yǎng)費用累計即報費)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形 ABCD 中,過點 D DEAB 于點 E,點 F CD 上,CF =AE,連接 BFAF

1)求證:四邊形 BFDE 是矩形;

2)若 AF 平分∠BAD,交DE與H點,且 AB=3AE,BF=6,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A1的坐標為(1,2),以O為圓心,OA1長為半徑畫弧,交直線yx于點B1.過點B1B1A2y軸交直線y2x于點A2,以O為圓心,OA2長為半徑畫弧,交直線y═x于點B2;過點B2B2A3y軸交直線y2x于點A3,以點O為圓心,OA3長為半徑畫弧,交直線yx于點B3;……按如此規(guī)律進行下去,點B2020的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學以致用:問題1:怎樣用長為的鐵絲圍成一個面積最大的矩形?

小學時我們就知道結(jié)論:圍成正方形時面積最大,即圍成邊長為的正方形時面積最大為.請用你所學的二次函數(shù)的知識解釋原因.

思考驗證:問題2:怎樣用鐵絲圍一個面積為且周長最小的矩形?

小明猜測:圍成正方形時周長最小.

為了說明其中的道理,小明翻閱書籍,找到下面的結(jié)論:

、均為正實數(shù))中,若為定值,則,只有當時,有最小值

思考驗證:證明:均為正實數(shù))

請完成小明的證明過程:

證明:對于任意正實數(shù)、

  

解決問題:

1)若,則  (當且僅當  時取;

2)運用上述結(jié)論證明小明對問題2的猜測;

3)填空:當時,的最小值為  

查看答案和解析>>

同步練習冊答案