【題目】如圖1,在四邊形ABCD中,點(diǎn)EAB延長(zhǎng)線上一點(diǎn),連接并延長(zhǎng)交AD延長(zhǎng)線于點(diǎn),,.(1)求證:;

1

2)如圖2,連接于點(diǎn),連接,若的角平分線,的角平分線,過點(diǎn)于點(diǎn), 求證:;

2備用圖

3)在(2)的條件下,若,,求的度數(shù).

【答案】1)見解析,(2)見解析,(3

【解析】

1)先根據(jù)平行線的判定證明AFBC,可得∠FDC=DCB,由已知可得∠CBE=DCB,由平行線的判定可得結(jié)論;
2)先根據(jù)垂直得∠HBC=90°=CBE+ABH,設(shè),則∠ABH,由平行線和角平分線的定義可推出,; ,即可得結(jié)論;
3)根據(jù)第(2)的結(jié)論,可得,由三角形的內(nèi)角和得,根據(jù)已知可得,過點(diǎn),由平行線的性質(zhì)及已知條件可得∠BFE=30°

解:(1

,

,

,

;

2)過點(diǎn)

的角平分線,的角平分線

,

設(shè)

由(1)問可知,,

,,

,

,

,

,

,

,

;

3)由(2)得,,

,

,

,

,

,

,

,

過點(diǎn)

,

故答案為:(1)見解析,(2)見解析,(3 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D以1cm/s 的速度從點(diǎn)A出發(fā)到點(diǎn)B止,動(dòng)點(diǎn)E以2cm/s 的速度從點(diǎn)C出發(fā)到點(diǎn)A止,且兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)的時(shí)間t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,∠ABO=60°,若點(diǎn)D(1,0)且BD=2OD.把△ABO繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m°(0<m<180)后,點(diǎn)B恰好落在初始Rt△ABO的邊上,此時(shí)的點(diǎn)B記為B′,則點(diǎn)B′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)在第一象限,過點(diǎn)Ax軸作垂線,垂足為點(diǎn)B,連接OA,,點(diǎn)MO出發(fā),沿y軸的正半軸以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向x軸負(fù)方向運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,連接AM,AN,MN

a的值;

當(dāng)時(shí),

請(qǐng)?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請(qǐng)求出其值;若變化,請(qǐng)說明理由.

當(dāng)時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法,正確的是( )

A. ac=bc,a=b

B. 30.15°=30°15′

C. 一個(gè)圓被三條半徑分成面積比2:3:4的三個(gè)扇形,則最小扇形的圓心角為90°

D. 鐘表上的時(shí)間是9點(diǎn)40,此時(shí)時(shí)針與分針?biāo)傻膴A角是50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.

(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案