【題目】問題情境1:如圖1,ABCD,PABCD內(nèi)部一點,PBD的右側(cè),探究∠B,∠P,∠D之間的關(guān)系?

小明的思路是:如圖2,過PPEAB,通過平行線性質(zhì),可得∠B,∠P,∠D之間滿足   關(guān)系.(直接寫出結(jié)論)

問題情境2

如圖3ABCD,PAB,CD內(nèi)部一點,PBD的左側(cè),可得∠B,∠P,∠D之間滿足   關(guān)系.(直接寫出結(jié)論)

問題遷移:請合理的利用上面的結(jié)論解決以下問題:

已知ABCD,∠ABE與∠CDE兩個角的角平分線相交于點F

1)如圖4,若∠E80°,求∠BFD的度數(shù);

2)如圖5中,∠ABMABF,∠CDMCDF,寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.

3)若∠ABMABF,∠CDMCDF,設(shè)∠Em°,用含有n,m°的代數(shù)式直接寫出∠M   

【答案】問題情境1:∠B+BPD+D360°,∠P=∠B+D;(1140°;(2)E+M60°(3)

【解析】

問題情境1:過點PPEAB,根據(jù)平行線的性質(zhì),得到∠B+BPE=180°,∠D+DPE=180°,進而得出:∠B+P+D=360°;

問題情境2:過點PEPAB,再由平行線的性質(zhì)即可得出結(jié)論;

②,③根據(jù)①中的方法可得出結(jié)論;

問題遷移:

1)如圖4,根據(jù)角平分線定義得:∠EBF=ABE,∠EDF=CDE,由問題情境1得:∠ABE+E+CDE=360°,再根據(jù)四邊形的內(nèi)角和可得結(jié)論;

2)設(shè)∠ABM=x,∠CDM=y,則∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,根據(jù)問題情境和四邊形內(nèi)角和得等式可得結(jié)論;

3)同(2)將3倍換為n倍,同理可得結(jié)論.

問題情境1

如圖2,∠B+BPD+D360°,理由是:

PPEAB

ABCD,PEAB,

ABPECD,

∴∠B+BPE180°,∠D+DPE180°

∴∠B+BPE+D+DPE360°,

即∠B+BPD+D360°

故答案為:∠B+P+D360°;

問題情境2

如圖3,∠P=∠B+D,理由是:

過點PEPAB,

ABCD,

ABCDEP

∴∠B=∠BPE,∠D=∠DPE

∴∠BPD=∠B+D,

即∠P=∠B+D;

故答案為:∠P=∠B+D;

問題遷移:

1)如圖4,∵BF、DF分別是∠ABE和∠CDE的平分線,

∴∠EBFABE,∠EDFCDE,

由問題情境1得:∠ABE+E+CDE360°

∵∠E80°,

∴∠ABE+CDE280°,

∴∠EBF+EDF140°,

∴∠BFD360°80°140°140°;

2)如圖5,E+M60°,理由是:

∵設(shè)∠ABMx,∠CDMy,則∠FBM2x,∠EBF3x,∠FDM2y,∠EDF3y,

由問題情境1得:∠ABE+E+CDE360°,

6x+6y+E360°,

E60xy

∵∠M+EBM+E+EDM360°,

6x+6y+E=∠M+5x+5y+E

∴∠Mx+y,

E+M60°;

3)如圖5,∵設(shè)∠ABMx,∠CDMy,則∠FBM=(n1x,∠EBFnx,∠FDM=(n1y,∠EDFny,

由問題情境1得:∠ABE+E+CDE360°,

2nx+2ny+E360°

x+y,

∵∠M+EBM+E+EDM360°,

2nx+2ny+E=∠M+2n1x+2n1y+E,

∴∠M;

故答案為:∠M

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC的三個頂點的位置如圖所示,點的坐標是(-2,2),現(xiàn)將ABC平移,使點A對應(yīng)點為點分別是BC的對應(yīng)點.

(1)請畫出平移后的(不寫畫法);

(2)直接寫出點的坐標;

(3)ABC內(nèi)部一點P的坐標為則點P的對應(yīng)點的坐標是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AEM30°,CEMN,垂足為點E,∠CDN150°,EC平分∠AEF

1)求∠C的度數(shù);

2)求證:∠FDE=∠FED

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的盒子里裝有30個除顏色外其它均相同的球,其中紅球有m個,白球有3m個,其它均為黃球.現(xiàn)小李從盒子里隨機摸出一個球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機摸出一個球,若為黃球,則小馬獲勝.

(1)當m=4時,求小李摸到紅球的概率是多少?

(2)當m為何值時,游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在菱形中,對角線,相交于點,,

1)求證:四邊形是矩形;

2)若,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組.把不等式組的解集在數(shù)軸上表示出來,并寫出不等式組的非負整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在菱形中,對角線,相交于點,,

1)求證:四邊形是矩形;

2)若,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點分別在軸和軸的正半軸上,且滿足.

(1)求點、點的坐標;

(2)若點從點出發(fā),以每秒1個單位長度的速度沿射線CB運動,連結(jié)AP,設(shè)的面積為,點的運動時間為秒,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)(2)的條件下,是否存在點,使得以點、為頂點的三角形與相似,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“如圖1,在Rt△ABC中,∠ACB=90°,CD是△ABC的高,則△ACD與△CBD相似嗎?”于是,學生甲發(fā)現(xiàn)CD2=AD·BD也成立.

問題1:請你證明CD2=AD·BD;

學生乙從CD2=AD·BD中得出:可以畫出兩條已知線段的比例中項.

問題2:已知兩條線段AB、BCx軸上,如圖2:請你用直尺(無刻度)和圓規(guī)作出這兩條線段的比例中項.要求保留作圖痕跡,不要寫作法,最后指出所要作的線段.

學生丙也從CD2=AD·BD中悟出了矩形與正方形的等積作法.

問題3:如圖3,已知矩形ABCD,請你用直尺(無刻度)和圓規(guī)作出一個正方形BMNP,使得S正方形BMNP=S矩形ABCD.要求:保留作圖痕跡;簡要寫出作圖每個步驟的要點.

查看答案和解析>>

同步練習冊答案