【題目】我們可用表示以為自變量的函數(shù),如一次函數(shù),可表示為,且,,定義:若存在實(shí)數(shù),使成立,則稱的不動(dòng)點(diǎn),例如:,令,得,那么的不動(dòng)點(diǎn)是1.

1)已知函數(shù),求的不動(dòng)點(diǎn).

2)函數(shù)是常數(shù))的圖象上存在不動(dòng)點(diǎn)嗎?若存在,請(qǐng)求出不動(dòng)點(diǎn);若不存在,請(qǐng)說明理由;

3)已知函數(shù)),當(dāng)時(shí),若一次函數(shù)與二次函數(shù)的交點(diǎn)為,即兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且兩點(diǎn)關(guān)于直線對(duì)稱,求的取值范圍.

【答案】1的不動(dòng)點(diǎn)為02;(2)①時(shí),有唯一的不動(dòng)點(diǎn)時(shí),有無數(shù)個(gè)不動(dòng)點(diǎn)③時(shí),沒有不動(dòng)點(diǎn);(3的取值范圍是

【解析】

1)根據(jù)不動(dòng)點(diǎn)的性質(zhì)即可列方程求解;

2)令,得:,根據(jù)m,n的取值進(jìn)行討論即可求解;

3)令,則,根據(jù)一元二次方程根與系數(shù)求出A,B的中點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)在直線上,得到,得到b關(guān)于a的二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)即可求解.

解:(1)令,則,,

所以的不動(dòng)點(diǎn)為02

2)令,得:

,即時(shí),有唯一的不動(dòng)點(diǎn)

,即時(shí),有無數(shù)個(gè)不動(dòng)點(diǎn)

,即時(shí),沒有不動(dòng)點(diǎn)

3)令,則

設(shè),,則

的中點(diǎn)坐標(biāo)為

,

所以

點(diǎn)在直線上,所以

當(dāng)時(shí),

此時(shí),恒大于0

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2

(2)用含n的等式表示上面的規(guī)律:   ;

(3)用找到的規(guī)律解決下面的問題:

計(jì)算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列函數(shù):①; ②; ③.從中任取一個(gè)函數(shù),取出的函數(shù)符合條件“當(dāng)時(shí),函數(shù)值增大而減小”的概率是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由一個(gè)角為60°且邊長(zhǎng)為1的菱形組成的網(wǎng)格,每個(gè)菱形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A,B,C都在格點(diǎn)上,則tan∠BAC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)碼產(chǎn)品專賣店的一塊攝像機(jī)支架如圖所示,將該支架打開立于地面MN上,主桿AC與地面垂直,調(diào)節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時(shí)支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點(diǎn)A到調(diào)節(jié)旋鈕B的距離為40cm.支架CD的長(zhǎng)度為30cm,旋轉(zhuǎn)鈕D是腳架BE的中點(diǎn),求腳架BE的長(zhǎng)度和支架最高點(diǎn)A到地面的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場(chǎng)采購(gòu)員要到廠家批發(fā)購(gòu)買籃球和排球共個(gè),籃球個(gè)數(shù)不少于排球個(gè)數(shù),付款總額不得超過元,已知兩種球廠的批發(fā)價(jià)和商場(chǎng)的零售價(jià)如下表. 設(shè)該商場(chǎng)采購(gòu)個(gè)籃球.

品名

廠家批發(fā)價(jià)/元/個(gè)

商場(chǎng)零售價(jià)/元/個(gè)

籃球

排球

1)求該商場(chǎng)采購(gòu)費(fèi)用(單位:元)與(單位:個(gè))的函數(shù)關(guān)系式,并寫出自變最的取值范圍:

2)該商場(chǎng)把這個(gè)球全都以零售價(jià)售出,求商場(chǎng)能獲得的最大利潤(rùn);

3)受原材料和工藝調(diào)整等因素影響,采購(gòu)員實(shí)際采購(gòu)時(shí),低球的批發(fā)價(jià)上調(diào)了元/個(gè),同時(shí)排球批發(fā)價(jià)下調(diào)了元/個(gè).該體有用品商場(chǎng)決定不調(diào)整商場(chǎng)零售價(jià),發(fā)現(xiàn)將個(gè)球全部賣出獲得的最低利潤(rùn)是元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:

1)分別寫出第6、7兩個(gè)圖形各有多少顆黑色棋子?

2)寫出第n個(gè)圖形黑色棋子的顆數(shù)?

3)是否存在某個(gè)圖形有1020顆黑色棋子?若存在,求出是第幾個(gè)圖形;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn) P(2,4)關(guān)于 y 軸的對(duì)稱點(diǎn) P'在反比例函數(shù) yk0)的圖象上.

(1)求此反比例函數(shù)關(guān)系式;

(2)當(dāng) x 在什么范圍取值時(shí),y 是小于 1 的正數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案