如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(﹣2,0)和點C(0,﹣8).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為 ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
③設S0是②中函數(shù)S的最大值,直接寫出S0的值.
(1);(2)(,0);(3)①不存在,理由見試題解析;②;③.
解析試題分析:(1)根據(jù)已知的與x軸的兩個交點坐標和經(jīng)過的一點利用交點式求二次函數(shù)的解析式即可;
(2)首先根據(jù)上題求得的函數(shù)的解析式確定頂點坐標,然后求得點C關于x軸的對稱點的坐標C′,從而求得直線C′M的解析式,求得與x軸的交點坐標即可;
(3)(3)①如果DE∥OC,此時點D,E應分別在線段OA,CA上,先求出這個區(qū)間t的取值范圍,然后根據(jù)平行線分線段成比例定理,求出此時t的值,然后看t的值是否符合此種情況下t的取值范圍.如果符合則這個t的值就是所求的值,如果不符合,那么就說明不存在這樣的t.
②本題要分三種情況進行討論:當E在OC上,D在OA上,即當時,此時S=OE•OD,由此可得出關于S,t的函數(shù)關系式;
當E在CA上,D在OA上,即當時,此時S=OD×E點的縱坐標.由此可得出關于S,t的函數(shù)關系式;
當E,D都在CA上時,即當相遇時用的時間,此時S=S△AOE﹣S△AOD,由此可得出S,t的函數(shù)關系式;
綜上所述,可得出不同的t的取值范圍內,函數(shù)的不同表達式.
③根據(jù)②的函數(shù)即可得出S的最大值.
試題解析:(1)設二次函數(shù)的解析式為,∵圖象過點(0,﹣8),∴,∴二次函數(shù)的解析式為;
(2)∵=,∴點M的坐標為(2,),∵點C的坐標為(0,),∴點C關于x軸對稱的點C′的坐標為(0,8),∴直線C′M的解析式為:,令,得,解得:,∴點K的坐標為(,0);
(3)①不存在PQ∥OC,
若PQ∥OC,則點P,Q分別在線段OA,CA上,此時,,∵PQ∥OC,∴△APQ∽△AOC,∴,∵AP=,AQ=,∴,∴,∵>2不滿足;∴不存在PQ∥OC;
②分情況討論如下,
情況1:
S=OP•OQ=;
情況2:
作QE⊥OA,垂足為E,S=OP•EQ=,
情況3:,
作OF⊥AC,垂足為F,則OF=,S=QP•OF=;
∴;
③當時,,函數(shù)的最大值是12;
當時,,函數(shù)的最大值是;
當,,函數(shù)的最大值為;
∴S0的值為.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.
(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當平行四邊形的面積為8時,求出點P的坐標;
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中的字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點坐標為(m,2m-1),即x=m③,y=2m-1④.
當m的值變化時,x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實數(shù),拋物線頂點的縱坐標y和橫坐標x都滿足關系式:y=2x-1;
根據(jù)上述閱讀材料提供的方法,確定點(-2m, m-1)滿足的函數(shù)關系式為_______.
(2)根據(jù)閱讀材料提供的方法,確定拋物線頂點的縱坐標y與橫坐標x之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某公司生產(chǎn)的一種健身產(chǎn)品在市場上受到普遍歡迎,每年可在國內、國外市場上全部售完,該公司的年產(chǎn)量為6千件,若在國內市場銷售,平均每件產(chǎn)品的利潤y1(元)與國內銷售數(shù)量x(千件)的關系為:若在國外銷售,平均每件產(chǎn)品的利潤y2(元)與國外的銷售數(shù)量t(千件)的關系為:
(1)用x的代數(shù)式表示t為:t= ;當0<x≤4時, y2與x的函數(shù)關系為y2= ;當 ≤x< 時,y2=100;
(2)求每年該公司銷售這種健身產(chǎn)品的總利潤w(千元)與國內的銷售數(shù)量x(千件)的函數(shù)關系式,并指出x的取值范圍;
(3)該公司每年國內、國外的銷售量各為多少時,可使公司每年的總利潤最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看做一次函數(shù):y=-10x+500.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價應定為多少元?(3分)
(3)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量) (3分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.
(1)點 (填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某玩具批發(fā)商銷售每件進價為40元的玩具,市場調查發(fā)現(xiàn),若以每件50元的價格銷售,平均每天銷售90件,單價每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系式為 ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關系式;
(3)物價部門規(guī)定每件售價不得高于55元,當每件玩具的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與軸交于點.
(1)平移該拋物線使其經(jīng)過點和點(2,0),求平移后的拋物線解析式;
(2)求該拋物線的對稱軸與(1)中平移后的拋物線對稱軸之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com