某玩具批發(fā)商銷售每件進價為40元的玩具,市場調查發(fā)現(xiàn),若以每件50元的價格銷售,平均每天銷售90件,單價每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系式為 ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關系式;
(3)物價部門規(guī)定每件售價不得高于55元,當每件玩具的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少元?
(1)﹣3x+240;
(2)﹣3x2+360x﹣9600;
(3)每件玩具的銷售價為55元時,可獲得1125元的最大利潤
解析試題分析:(1)平均每天銷售量y=原來的銷售量90﹣3×相對于50元的單價提高的價格;
(2)銷售利潤W=單價的利潤×平均每天的銷售量,代入即可得出W與x的函數(shù)關系式.
(3)根據(jù)題中所給的自變量的取值,結合(2)得到的關系式,即可求得二次函數(shù)的最值.
解:(1)由題意得:y=90﹣3(x﹣50)=﹣3x+240;
(2)W=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;
(3)y=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200,
故當x=60時,y取最大值1200,
∵x=60是二次函數(shù)的對稱軸,且開口向下,
∴當x<60時,y隨x的增大而增大,
∵規(guī)定每件售價不得高于55元,
∴當x=55時,W取得最大值為1125元,
即每件玩具的銷售價為55元時,可獲得1125元的最大利潤.
考點:二次函數(shù)的應用
點評:本題考查了二次函數(shù)的性質在實際生活中的應用,最大銷售利潤的問題常用函數(shù)的增減性來解答,要注意應該在自變量的取值范圍內求最大值(或最小值),也就是說二次函數(shù)的最值不一定在x=﹣時取得.
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t 取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx﹣3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(﹣2,0)和點C(0,﹣8).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為 ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
③設S0是②中函數(shù)S的最大值,直接寫出S0的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0).
(1)寫出拋物線的對稱軸與x軸的交點坐標;
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大;
(3)點B(﹣1,2)在該拋物線上,點C與點B關于拋物線的對稱軸對稱,求直線AC的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線的圖象,將其向右平移兩個單位后得到圖象.
(1)求圖象所表示的拋物線的解析式:
(2)設拋物線和軸相交于點、點(點位于點的右側),頂點為點,點位于軸負半軸上,且到軸的距離等于點到軸的距離的2倍,求所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與x軸交與點A(1,0)與點B, 且過點C(0,3),
(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?,若存在,求出點P的坐標及△PBC的面積最大值.若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉1350,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM= ,OM= ;
(2)矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤時,S與t之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知,如圖(a),拋物線經(jīng)過點A(x1,0),B(x2,0),C(0,-2),其頂點為D.以AB為直徑的⊙M交y軸于點E、F,過點E作⊙M的切線交x軸于點N。∠ONE=30°,。
(1)求拋物線的解析式及頂點D的坐標;
(2)連結AD、BD,在(1)中的拋物線上是否存在一點P,使得△ABP與△ADB相似?若存在,求出P點的坐標;若不存在,說明理由;
(3)如圖(b),點Q為上的動點(Q不與E、F重合),連結AQ交y軸于點H,問:AH·AQ是否為定值?若是,請求出這個定值;若不是,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com