【題目】填寫理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1).
(1)繼續(xù)填寫:A6(________,________),A7(________,________),A8(________,________),A9((________,________).A10((________,________),A11(________,________),A12(________,________),A13(________,________).
(2)寫出點A2010(________,________),A2011(________,________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直角坐標平面內(nèi)兩點A(-2,-3)、B(3,-3),將點B向上平移5個單位到達點C,求:
(1)A、B兩點間的距離;
(2)寫出點C的坐標;
(3)四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將△ABC平移到△A′B′C′的位置,連接BB′,AA′,CC′,平移的方向是點______到點________的方向,平移的距離是線段______的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長為2的等邊三角形,點A在y軸上,點O,B1 , B2 , B3…都在直線l上,則點B2017的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC的∠C折起,翻折后角的頂點位置記作C′,當C′落在AC上時(如圖1),易證:∠1=2∠2.
當C′點落在CA和CB之間(如圖2)時,或當C′落在CB、CA的同旁(如圖3)時,∠1、∠2、∠3關系又如何?請寫出你的猜想,并就其中一種情況給出證明.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,則∠AOF等于( 。
A. 140° B. 130° C. 120° D. 110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com