【題目】小紅將筆記本電腦水平放置在桌子上,當(dāng)顯示屏與底板所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖如圖2. 使用時為了散熱,她在底板下墊入散熱架后,電腦轉(zhuǎn)到位置(如圖3),側(cè)面示意圖為圖4. 已知,于點,.
(1)求的度數(shù).
(2)顯示屏的頂部比原來的頂部升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏與水平線的夾角仍保持120°,則顯示屏應(yīng)繞點'按順時針方向旋轉(zhuǎn)多少度?并說明理由.
【答案】(1);(2);(3)30°,理由見解析
【解析】
(1)先求出該角的正弦值,根據(jù)特殊函數(shù)值求出角的度數(shù),即可得出答案;
(2)先求出BD的長度,再證明和互補,即三點在同一條直線上,故與BD的差即為所求;
(3)先根據(jù)求出的度數(shù),再根據(jù)求出的度數(shù)即可得出答案.
解:(1)∵,
∴,
∴.
(2)如圖,過點作交的延長線于點.
∵,
∴.
∵,
∴,
∴.
∵,
∴.
∵,
∴.
∴.
∴顯示屏的頂部比原來頂部升高了.
(3)顯示屏應(yīng)繞點按順時針方向旋轉(zhuǎn)30°. 理由如下:
設(shè)電腦顯示屏繞點按順時針方向旋轉(zhuǎn)角至處,.
∵顯示屏與水平線的夾角仍保持120°,
∴.
∵,
∴.
∵,
∴,即,
∴顯示屏應(yīng)繞點按順時針方向旋轉(zhuǎn)30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點的坐標(biāo)為,,、分別是射線、線段上的點,且,以、為鄰邊構(gòu)造平行四邊形,①若線段與交于點,當(dāng)時,則_______;②把沿著進(jìn)行折疊,當(dāng)折疊后與的重疊部分的面積是平行四邊形的時,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC.
(1)把△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,使得點B的對應(yīng)點E落在AB邊上,用尺規(guī)作圖的方法作出△DEC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接AD,求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的與邊分別交于兩點,過點作于點.
(1)判斷與的位置關(guān)系,并說明理由;
(2)求證:為的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵學(xué)生閱讀,某校開展了網(wǎng)上閱讀室活動,校教務(wù)處為了解學(xué)生的閱讀情況,隨機抽查了部分學(xué)生最近一周參加網(wǎng)上閱讀室的天數(shù),并用得到的數(shù)據(jù)繪制了如下兩幅統(tǒng)計圖.
請根據(jù)圖中提供的信息,回答下列問題:
(1)__________(百分比),本次調(diào)查的參加網(wǎng)上閱讀室的天數(shù)的中位數(shù)為________.
(2)請補全條形統(tǒng)計圖.
(3)如果該校有3000名學(xué)生,請估算全校有多少名學(xué)生參加網(wǎng)上閱讀室的天數(shù)不少于4天.
(4)在某班被調(diào)查的學(xué)生中,參加網(wǎng)上閱讀室的天數(shù)不少于4天的有2名女同學(xué),3名男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加閱讀心得分享會,請用列表法或畫樹狀圖法求所抽取的2名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張矩形ABCD紙片中,AD=30,AB=25,先將這張紙片沿著過點A的直線折疊,使得點B落在矩形的對稱軸上,折痕交矩形的邊于點E,則折痕AE的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校為了了解節(jié)能減排、垃圾分類等知識的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查的學(xué)生共有___________人,估計該校名學(xué)生中“不了解”的人數(shù)是__________人;
(2)將條形統(tǒng)計圖補充完整;
(3)“非常了解”的人中有,兩名男生,,兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達(dá)35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當(dāng)點B距離水平地面34cm時,點C到水平地面的距離CE為55cm.設(shè)AF∥ MN.
(1)求⊙A的半徑.
(2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結(jié)果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com