【題目】小紅將筆記本電腦水平放置在桌子上,當(dāng)顯示屏與底板所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖如圖2. 使用時為了散熱,她在底板下墊入散熱架后,電腦轉(zhuǎn)到位置(如圖3),側(cè)面示意圖為圖4. 已知,于點.

1)求的度數(shù).

2)顯示屏的頂部比原來的頂部升高了多少?

3)如圖4,墊入散熱架后,要使顯示屏與水平線的夾角仍保持120°,則顯示屏應(yīng)繞點'按順時針方向旋轉(zhuǎn)多少度?并說明理由.

【答案】1;(2;(330°,理由見解析

【解析】

1)先求出該角的正弦值,根據(jù)特殊函數(shù)值求出角的度數(shù),即可得出答案;

2)先求出BD的長度,再證明互補,即三點在同一條直線上,故BD的差即為所求;

3)先根據(jù)求出的度數(shù),再根據(jù)求出的度數(shù)即可得出答案.

解:(1)∵

,

.

2)如圖,過點的延長線于點.

,

.

,

.

,

.

.

.

∴顯示屏的頂部比原來頂部升高了.

3)顯示屏應(yīng)繞點按順時針方向旋轉(zhuǎn)30°. 理由如下:

設(shè)電腦顯示屏繞點按順時針方向旋轉(zhuǎn)角至處,.

∵顯示屏與水平線的夾角仍保持120°

.

,

.

,

,即,

∴顯示屏應(yīng)繞點按順時針方向旋轉(zhuǎn)30°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點的坐標(biāo)為,,分別是射線、線段上的點,且,以為鄰邊構(gòu)造平行四邊形,若線段交于點,當(dāng)時,則_______;沿著進(jìn)行折疊,當(dāng)折疊后的重疊部分的面積是平行四邊形時,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC

1)把△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,使得點B的對應(yīng)點E落在AB邊上,用尺規(guī)作圖的方法作出△DEC;(保留作圖痕跡,不寫作法)

2)在(1)的條件下,連接AD,求證:ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的與邊分別交于兩點,過點于點

(1)判斷的位置關(guān)系,并說明理由;

(2)求證:的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵學(xué)生閱讀,某校開展了網(wǎng)上閱讀室活動,校教務(wù)處為了解學(xué)生的閱讀情況,隨機抽查了部分學(xué)生最近一周參加網(wǎng)上閱讀室的天數(shù),并用得到的數(shù)據(jù)繪制了如下兩幅統(tǒng)計圖.

請根據(jù)圖中提供的信息,回答下列問題:

1__________(百分比),本次調(diào)查的參加網(wǎng)上閱讀室的天數(shù)的中位數(shù)為________

2)請補全條形統(tǒng)計圖.

3)如果該校有3000名學(xué)生,請估算全校有多少名學(xué)生參加網(wǎng)上閱讀室的天數(shù)不少于4天.

4)在某班被調(diào)查的學(xué)生中,參加網(wǎng)上閱讀室的天數(shù)不少于4天的有2名女同學(xué),3名男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加閱讀心得分享會,請用列表法或畫樹狀圖法求所抽取的2名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張矩形ABCD紙片中,AD=30,AB=25,先將這張紙片沿著過點A的直線折疊,使得點B落在矩形的對稱軸上,折痕交矩形的邊于點E,則折痕AE的長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校為了了解節(jié)能減排、垃圾分類等知識的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類,并將結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)本次調(diào)查的學(xué)生共有___________人,估計該校名學(xué)生中不了解的人數(shù)是__________人;

2)將條形統(tǒng)計圖補充完整;

3非常了解人中有,兩名男生,,兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達(dá)35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當(dāng)點B距離水平地面34cm時,點C到水平地面的距離CE55cm.設(shè)AF MN.

1)求⊙A的半徑.

2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結(jié)果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形中,點為對角線上一動點,,則的最小值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案