【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當(dāng)點B距離水平地面34cm時,點C到水平地面的距離CE55cm.設(shè)AF MN.

1)求⊙A的半徑.

2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結(jié)果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).

【答案】14;(2BC=30cm

【解析】

1)作BKAF于點H,MN于點K,通過△ABH∽△ACG,根據(jù)相似三角形的性質(zhì)可得關(guān)于x的方程,求解即可;

2)在RtACG中利用正弦值解線段AC長,即可得.

1)解:作BKAF于點H,MN于點K,

BHCG, ABH∽△ACG,

設(shè)圓形滾輪的半徑AD長為xcm,

解得,x=4

∴⊙A的半徑是4cm.

2)在RtACG中,CG=76-4=72cm,

sinCAF=

AC=cm,

BC=AC-AB=80-50=30cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線(是常數(shù),)與直線都經(jīng)過軸上的一點,且拋物線的頂點在直線上,則稱此直線與該拋物線具有“一帶一路”關(guān)系.此時,直線叫做拋物線的“帶線”,拋物線叫做直線的“路線”.

1)若直線與拋物線具有“一帶一路”關(guān)系,求的值;

2)若某“路線”的頂點在反比例函數(shù)的圖象上,它的“帶線”的解析式為,求此“路線”的解析式;

3)當(dāng)常數(shù)滿足時,請直接寫出拋物線的“帶線”軸,軸所圍成的三角形面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在唐河縣文峰廣場,聳立著一座古老建筑-文峰塔,傳說唐河縣城是一個船地, 唐中是船頭,文峰塔是船的桅桿,無論唐河水怎么漲,唐河縣城這艘船也水漲船高.學(xué)完了三角函數(shù)知識后,某校數(shù)學(xué)社團的劉明和王華決定用自己學(xué)到的知識測量文峰塔的高度.如圖2,劉明在點處測得塔頂的仰角為王華在高臺上的點處測得塔頂的仰角為,若高臺高為米,點到點的水平距離EC米,且三點共線,求該塔的高度.(參考數(shù)據(jù):,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,A、B、C均是⊙O的點,點D是∠BAC的平分線與⊙O的交點,若∠BAC=120°,則弦BD的長為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C 經(jīng)過原點且與兩坐標軸分別交于點 A 與點 B,點 B 的坐標為(﹣,0),M 是圓上一點,∠BMO=120°.⊙C 圓心 C 的坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】駱駝被稱為沙漠之舟,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關(guān)系如圖1所示.

小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).

A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)

B.駱駝從0時到時刻之間的最高體溫與當(dāng)日最低體溫的差

C.駱駝在時刻的體溫與當(dāng)日平均體溫的絕對差

D.駱駝從0時到時刻之間的體溫最大值與最小值的差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點到封閉圖形的“極化距離”定義如下:任取圖形上一點,記長度的最大值為,最小值為(若重合,則),則“極化距離”

1)如圖1,正方形以原點為中心,點的坐標為,

①點到線段的“極化距離”_______;

到線段的“極化距離”_________

②記正方形為圖形,點軸上,且,求點的坐標;

2)如圖2,圖形為圓心軸上,半徑為的圓,直線軸,軸分別交于,兩點,若線段上的任一點都滿足,直接寫出圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線,直線

(1)當(dāng)時,求拋物線與軸交點的坐標;

(2)直線是否可能經(jīng)過拋物線的頂點,如果可能,請求出的值,如果不可能,請說明理由;

(3),當(dāng)時,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某次“小學(xué)生書法比賽”的成績情況,隨機抽取了30名學(xué)生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:

(1)圖中a的值為   

(2)若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70≤x<80”所對應(yīng)扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學(xué)生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有   人:

(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學(xué)生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案