【題目】在△ABC中,∠A=ACB,CD是△ABC的角平分線(xiàn),CE是△ABC的高.

1)試說(shuō)明∠CDB=3DCB

2)若∠DCE=48°,求∠ACB的度數(shù).

【答案】(1)見(jiàn)解析;(2)28°.

【解析】

(1)根據(jù)題意設(shè)∠A2x,則∠ACB=2x,∠ACD=x,由三角形的外角定理得出∠CDB=A+ACD=3x,即可得出結(jié)論;

(2)求出∠CDB=42°,由(1)得出∠DCB=14°得出∠ACB=28°即可.

解:(1)證明:由題意設(shè)∠A=2x,

∴∠A=ACB=2x

CD是∠ACB的角平分線(xiàn),

ACD=DCB=x,

由三角形的外角定理可知:

CDB=A+ACD=2x+x=3x

∴∠CDB=3DCB

(2)∵CE△ABC的高,

∴∠E=90°

∵∠DCE=48°,

∴∠CDB=E-DCE=90°- 48°= 42°,

(1)可知∠CDB=3∠DCB=42°,

DCB=14°

∴∠ACB=2∠DCB=2×14°=28°.

故答案為:28°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,Am,0)、B0,n),m、n滿(mǎn)足(m-n)2+|m-|=0CAB的中點(diǎn),P是線(xiàn)段AB上一動(dòng)點(diǎn),Dx軸正半軸上一點(diǎn),且POPDDEABE

1)求∠OAB的度數(shù);

2)設(shè)AB4,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說(shuō)明理由;若不變,請(qǐng)求PE的值;

3)設(shè)AB4,若∠OPD45°,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,的平分線(xiàn)與DC交于點(diǎn)E,,BFAD的延長(zhǎng)線(xiàn)交于點(diǎn)F,則BC等于  

A. 2 B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC△ABD中,∠BAC=∠ABD=90°,點(diǎn)EAD邊上的一點(diǎn),且AC=AE,連接CEAB于點(diǎn)G,過(guò)點(diǎn)AAF⊥ADCE于點(diǎn)F.

(1)求證:△AGE≌△AFC;

(2)AB=AC,求證:AD=AF+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1) (x2)290

(2)

(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某零件如圖所示,圖紙要求∠A=90°,B=32°,C=21°,當(dāng)檢驗(yàn)員量得∠BDC=145°,就斷定這個(gè)零件不合格,你能說(shuō)出其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x滿(mǎn)足(x4) (x9)6,求(x4)2+(x9)2的值.

解:設(shè)x4ax9b,則(x4)(x9)ab6,ab(x4)(x9)5,

(x4)2+(x9)2a2+b2(ab)22ab522×637

請(qǐng)仿照上面的方法求解下面問(wèn)題:

(1)x滿(mǎn)足(x2)(x5)10,求(x2)2 + (x5)2的值

(2)已知正方形ABCD的邊長(zhǎng)為x,E,F分別是AD、DC上的點(diǎn),且AE1,CF3,長(zhǎng)方形EMFD的面積是15,分別以MFDF作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)過(guò)點(diǎn),點(diǎn)Px軸正半軸上的一個(gè)動(dòng)點(diǎn),連接AP,在AP右側(cè)作,且,點(diǎn)B經(jīng)過(guò)矩形AOED的邊DE所在的直線(xiàn),設(shè)點(diǎn)P橫坐標(biāo)為t.

求拋物線(xiàn)解析式;

當(dāng)點(diǎn)D落在拋物線(xiàn)上時(shí),求點(diǎn)P的坐標(biāo);

若以A、B、D為頂點(diǎn)的三角形與相似,請(qǐng)直接寫(xiě)出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將圖1兩個(gè)邊長(zhǎng)為1的正方形分割拼接成右邊面積為2的正方形.

1)請(qǐng)你直接寫(xiě)出圖1中右邊正方形的邊長(zhǎng).

2)請(qǐng)你同樣用分割拼接的方法將圖2中的五個(gè)邊長(zhǎng)為1正方形分割重新拼接成一個(gè)面積為5的正方形,畫(huà)出切割拼接示意圖,并如圖1作出標(biāo)記.(不必寫(xiě)出作法)

3)設(shè)M=1+,M的整數(shù)部分,bM的小數(shù)部分,的小數(shù)部分,求

查看答案和解析>>

同步練習(xí)冊(cè)答案